Fly

TIME \& MONITORING

RELAYS

2
 re․

TECHNICAL CATALOG

wWw.elkoepusa.com

$\boxminus L K \bigcirc E P$,Holding

The company ELKO EP has been one of the leading European players in the field of residential and industrial electrical devices for more than 23 years. Since 2007, the company has been developing and producing its own system of Smart Home \& Building Solutions called iNELS.

At present, ELKO EP employs nearly 300 people, exports to 70 countries around the world and already has 10 foreign branches. The company is justly proud to produce it's own components, and to have its own development and innovation of new products. It is also able to offer its customers instantaneous distribution and rapid, flawless service. ELKO EP became the Company of the Year in 2012 and earned it's place as one of the TOP 100 Czech companies.

Facts and Stats

10
BRANCHES
OVER THE WORLD

70
EXPORTING

300
EMPLOYEES
5,000
iNELS INSTALLATIONS

12,000,000

Product Lines of ELKO EP

RELAYS - Modular electronic devices

A wide range of electronic modular devices, which bring new possibilities to home and office control, monitoring and security, as well as to industrial process control: time relays, installation contactors, staircase automatic switches, time switch clocks, dimmers, thermostats, power supply units, control and signaling devices, GSM gates, etc.

iNELS RF CONTROL - Wireless control

A unique wireless control system providing you perfect control over your home! The RF Control system enables you to control functions such as heating, lighting, electrical appliances and window shutters, all with a single touch. No wall cutting, fast and easy installation, exclusive design of wireless wall switch buttons and other components.
iNELS BUS SYSTEM - The iNELS Intelligent electro-installation system will transform your house into a timeless intelligent household. It will take charge of heating and air-conditioning, regulation, lighting control and home appliance switching, while also providing perfect security for your home. Enjoy controlling your entire house via a TV screen thanks to iNELS Multimedia (iMM) or use the App for your smartphone or tablet.

AUDIO/VIDEO

In this group you can find products that bring you a new dimension of controlling music, video and home appliances. These are not just ordinary controllers but products which can be a perfect part of your electro-installation.

Relays references

ELKO EP is a world leader in the field of electronic relay development and manufacturing for residential and industrial electro-installations. We offer more than 150 types of relays that can be produced under well-known OEM brand names.

We develop and implement products according to customer specifications as well as launch new products under brand names.

10 REASONS

.... why the CRM-91H/UNI is our best seller:

- universal supply 12-240 AC/DC
- components are from high quality suppliers (relay
from Tyco with switching cycles over 30 million)
- contact current rating - 16A

■ time range from 0.1 s to 10 days

- 10 frequently-used functions

■ box from non-flammable material with UV protection (box will never fade)

- laser printing (even after 10 years, you will clearly see the parameters and options)

■ certification which meets requirements of the World standards (UL, CE, PT, etc ...)

- 23 years of experience guarantees top quality proved by satisfied customers such as Schneider Electric, Eaton, Dayton, Siemens, etc.
- double vendor inspection

Catalogue content

Modular electronic devices

Time relays
Time relays review 9
PLUG-IN - PRM-91H/8, PRM-91H/11, PRM-92H, PRM-2H 10
Single-function time relay CRM-81J, CRM-83J 12
Delay OFF without supply voltage CRM-82TO 13
Doublestage delay unit SJR-2 14
Delay ON star/delta CRM-2T 15
Asymmetric cycler CRM-2H 16
Multifunction time relays
CRM-61 17
CRM-91HE, CRM-2HE - with external potentiometer 18
Staircase switch CRM-4 19
CRM-91H, CRM-93H, CRM-9S 20
Programmable digital relay PDR-2/A, PDR-2/B 22
Super-multifunction relay SMR-T, SMR-B 24
Digital time switch SHT-1, SHT-1/2, SHT-3, SHT-3/2 26
Power and auxiliary relays
Power and auxiliary relays review 27
Modular VS316/24, VS316/120, VS116U, VS308U 28
Dimmers
Overview of dimmers 30
LIC-2 31
DIM-15, SMR-M 32
Power supplies
Power supplies review 35
Line PS 36
Other modular devices
Review 38
Twilight switch SOU-1 39
Twilight and light switch SOU-3 40
Memory relay MR-41, MR-42 41
Monitoring relays
Monitoring relays review 44
HRN-3x, HRN-6x 46
Relay monitoring 3-phase mains HRN-43, HRN-43N 48
HRN-41, HRN-42 50
Relay for monitoring phase sequence and failure HRN-56 (120, 208, 240) 51
Monitoring relay
Power factor monitoring relay COS-1 52

Modular electronic devices

Monitoring current relays
PRI-32 53
PRI-51 54
PRII-53 55
PRI-41, PRI-42 56
Level monitoring relay
Level monitoring relays HRH-5 57
Level monitoring relays HRH-1 58
Level monitoring relays HRH-7 60
Level sensors to level switches SHR-1M, SHR-1N, SHR-2, SHR-3 (Accessories) 62
Thermostats
Thermostats review 64
Analog and digital thermostats
Modular thermostat TER-3 (A, B, C, D, G, H) 65
Modular thermostat TER-3 (E, F) 66
Modular 2-stage thermostat TER-4 67
Modular multifunction digital thermostat TER-9 68
Modular thermostat for controlling temperature of motor winding TER-7 70
Energy-saving digital thermo-valve ATV-1 71
Humidistat RHT-1 72
Accessories
Thermal sensors to thermostats TC, TZ, PT-100 73
Installation contactorsInstallation contactors and installation contactors with manual controlVS120, VS220, VS420, VS425, VS440, VS46375
VSM220, VSM425 76
EAN codes 78
Technical information
Main instructions (for correct use of products) 80
Electromagnetic compatibility of products 81
Products packing 82
Dimensions 83
Support of project design 87
Examples of usage 88
Production technology 98

Time relays

Single-function

Staircase switch

Time relay review

	Type	$\stackrel{\leftarrow}{\stackrel{\omega}{n}}$	\sum_{\sim}^{∞}
	a -delay off on entering edge	-	\bullet
	b-delay off on downward edge	-	-
	c-delay off on downward edge	-	\bullet
	d - cycler - flasher by impuls	\bullet	\bullet
	e-pulse shift	\bullet	\bullet
	f-delay on	-	\bullet
	g-pulse relay	\bullet	\bullet
	h-impulse relay with delay	\bullet	\bullet
	i-cycler starting with gap	\bullet	\bullet
	j- delay on after switched off		\bullet
$\stackrel{\text { 峾 }}{ }$	0.1-1s	\bullet	\bullet
	1-10s	\bullet	\bullet
	0.1-1 min	\bullet	\bullet
	1-10 min	\bullet	\bullet
	0.1-1h	\bullet	\bullet
	1-10h	-	\bullet
	0.1 - 1 day	\bullet	\bullet
	1-10 days	-	\bullet
	AC 120 V	\bullet	\bullet
	1xtriac	\bullet	
	1 NOOAgSnO		\bullet

Plug-in time relay PRM-91H, PRM-92H, PRM-2H

- Multifunction time relays are equivalents by module types of relay, designed to standardized plump 11 or 8 pin socket.
- Pin type enables easy changing, replacement older type of relays (pin-compatible) or easy changing auxiliary relay for time relays.

Multifunction time relay PRM-91H

- 8 or 11 pin type
- 10 time functions, time scale from 0.1 s to 10 days is divided into 10 ranges

Multifunction time relay PRM-92H

- 11 pin type
- 10 time functions, time scale from 0.1 s to 10 days is divided into 10 ranges

Asymmetric cycler PRM-2H

- 11 pin type
- 2 time functions, time scale from 0.1 s to 100 days is divided into 10 ranges
- Universal supply voltage AC/DC 12-240 V.
- Output indication: multif. red LED, flashing at certain states.
- PLUG-IN relays.

Technical Parameters	PRM-91H/8	PRM-91H/11	PRM-92H	PRM-2H
Number of functions:	10			2
Supply:	pins 2 and 7	pins 2 and 10	pins 2 and 10	pins 2 and 10
Voltage range:	AC/DC $12-240 \mathrm{~V}$ ($\mathrm{AC} 50-60 \mathrm{~Hz}$)			
Burden:	AC0.7-3 VA / DC 0.5-1.7 W			
Supply voltage tolerance:	-15% + 10%			
Supply indication:	green LED			
Time ranges:	0.1 s-10 days			0.1 s - 100 day
Time setting:	rotaty switch and potentiometer			
Time deviation:	5\%-mechanical setting			
Repeat accuracy:	0.2% - set value stability			
Temperature coefficient:	$0.01 \% /{ }^{\circ} \mathrm{F}$, at $=68{ }^{\circ} \mathrm{F}\left(0.01 \% /{ }^{\circ} \mathrm{C}, \mathrm{at}=20^{\circ} \mathrm{C}\right)$			
Output				
Number of contacts:	1x changeover / SPDT (AgNi /Silver Alloy)		2x changeover / DPDT (AgNi / Silver Alloy)	
Current rating:	Resistive load: 15A/240VAC/24VDC Inductive load: 1HP/240VAC, 1/2HP/120VDC		$\begin{array}{r} 8 \mathrm{~A} / 240 \mathrm{~V} \\ 1 / 2 \mathrm{HP} / 240 \mathrm{VA} \end{array}$	24VD 4HP/120VDC
Inrush current:	$30 \mathrm{~A} /<3 \mathrm{~s}$		$10 \mathrm{~A} /<3 \mathrm{~s}$	
Min. breaking capacity $D C$:	500 mW			
Output indication:	multifunction red LED			
Mechanical life:	3×10^{7}			
Electrical life resistive load:	0.7×10^{5}			

Symbol PRM-91H

PRM-92H, PRM-2H

LEGENDTO DESCRIPTION polarity - outputs / number on module / on socket

Description

0.1 - 1s

0.1-1h

1-10s

1-10 hrs

0.1-1 min

0.1 - 1 day

$1-10$ min
h

1-10 days

0.1 - 1 s

0.1-1h

only ON

1-10s

1-10 hrs

only OFF

0.1-1 min

0.1-1 day

1-10 min

1-10 days

Functions PRM-2H

Choice Function in PRM-2H is done by connecting terminals 2 and 5 .

Cycler beginning with pulse

Cycler beginning with pause

Functions of PRM-91H, PRM-92H

On Delay (Power On)
When the input voltage U is applied, timing delay t begins. Relay contacts R change state after time delay is complete. Contacts R return to their shelf state when input voltage U is removed. Trigger switch is not used in this function.

Off Delay

When input voltage U is applied, relay contacts R change state immediately and timing cycle begins. When time delay is complete, contacts return to shelf state. When input voltage U is removed, contacts will also return to their shelfstate. Trigger switch is not used in this function.

Repeat Cycle (Starting Off)
When input voltage U is applied, time delay t begins. When time delay t is complete, relay contacts R change state for time delay t. This cycle will repeat until input voltage U is removed. Trigger switch is not used in this function.

Repeat Cycle (Starting On)
When input voltage U is applied, relay contacts R change state immediately and time delay t begins. When time delay t is complete, contacts return to their shelf state for time delay t. This cycle will repeat until input voltage U is removed. Trigger switch is not used in this function.

Off Delay (S Break)
Input voltage U must be applied continuously. When trigger switch S is closed, relay contacts R change state. When trigger switch S is opened, delay t begins. When delay t is complete, contacts R return to their shelf state. If trigger switch S is closed before time delay tis complete, then time is reset. When trigger switch S is opened, the delay begins again, and relay contacts R remain in their energized state. If input voltage U is removed, relay contacts R return to their shelf state.

Single Shot
Upon application of input voltage U, the relay is ready to accept trigger signal S. Upon application of the trigger signal S, the relay contacts R transfer and the prese time t begins. During time-out, the trigger signal S is ignored. The relay resets by applying the trigger switch S when the relay is not energized

Single Shot Trailing Edge (Non-Retriggerable)
Upon application of input voltage U, the relay is ready to accept trigger signal S. Upon application of the trigger signal S, the relay contacts R transfer and the prese time t begins. At the end of the preset time t, the relay contacts R return to their normal condition unless the trigger switch S is opened and closed prior to time outt (before preset time elapses). Continuous cycling of the trigger switch S at a rate faster than the preset time will cause the relay contacts R to remain closed. If input voltage U is removed, relay contacts R return to their shelf state.

On/Off Delay
Input voltage U must be applied continuously. When trigger switch S is closed, time delay t begins. When time delay tis complete, relay contacts R change state and remain transferred until trigger switch S is opened. If input voltage U is removed, relay contacts R return to their shelf state.

Latching relay
Input voltage U must be applied continuously. Output changes state with every trigger switch S closure. If input voltage U is removed, relay contacts R return to their shelf state.

Pulse generator

Upon application of input voltage U, a single output pulse of 0.5 seconds is delivered to relay after time delay t. Power must be removed and reapplied to repeat pulse. Trigger switch is not used in this function.

Recommended socket for DIN rail

ES-8

8 pin

Single-function time relay CRM-81J, CRM-83J

- Single-function and single-time relay with fine time setting by a potentiometer (within the frames of a particular time range)
- Suitable for applications where function and time requirements are known
- Time switch, possible to be used for pump delay after switching heating off, switching of fans
- Choice of 3 functions:

> 1) ZR - Delay ON
> 2) ZN -Delay OFF
> 3) BL - Repeat Cycle

- Functions can be controlled by supply voltage or time scale control input:
($0.1 \mathrm{~s}-1 \mathrm{~s} / 1 \mathrm{~s}-10 \mathrm{~s} / 6 \mathrm{~s}-60 \mathrm{~s} / 1 \mathrm{~min}-10 \mathrm{~min} / 6 \mathrm{~min}-60 \mathrm{~min} / 1 \mathrm{~h}-10 \mathrm{hrs}$)
- Universal voltage range AC/DC $12-240 \mathrm{~V}$
- Red LED output indicator
-1-MODULE, DIN rail mounting

Technical parameters	CRM-81J	CRM-83J
Functions:	ZR - delay ON / ZN - delay 0FF / BL- cycler 1:1	
Supply terminals:	A1-A2	
Voltage range:	AC/DC $12-240 \mathrm{~V}(\mathrm{AC} 50-60 \mathrm{~Hz})$	
Burden:	AC 0.7-3VA / DC 0.5-1.7 W	
Supply voltage tolerance:	-15\%; +10\%	
Supply indication:	green LED	
Time ranges:	$0.1 \mathrm{~s}-10 \mathrm{~h}$ (in 6 ranges)	
Time setting:	potentiometer	
Time deviation:	5\%-mechanical setting	
Repeat accuracy:	0.2% - set value stability	
Temperature coefficient:	$0.01 \% /{ }^{\circ} \mathrm{F}, \mathrm{at}=68{ }^{\circ} \mathrm{F}\left(0.01 \% /{ }^{\circ} \mathrm{C}\right.$, at $\left.=20^{\circ} \mathrm{C}\right)$	
Output		
Number of contacts:	1x changeover / SPDT (AgNi / Silver Alloy)	3x changeover / SPDT (AgNi / Silver Alloy)
Current rating:	Resistive load: $15 \mathrm{~A} / 240 \mathrm{VAC} / 24 \mathrm{VDC}$ Inductive load: 1HP / $240 \mathrm{~V}, 1 / 2 \mathrm{HP} / 120 \mathrm{~V}$	$8 \mathrm{~A} / 240 \mathrm{VAC} / 24 \mathrm{VDC}$ $1 / 2 \mathrm{HP} / 240 \mathrm{~V}, 1 / 4 \mathrm{HP} / 120 \mathrm{~V}$
Inrush current:	$30 \mathrm{~A} /<3 \mathrm{~s}$	$10 \mathrm{~A} /<3 \mathrm{~s}$
Min. breaking capacity DC:	500 mW	
Output indication:	red LED	
Mechanical life:	3×10^{7}	
Electrical life resistive load:	0.7×10^{5}	
Control		
Consumption of input:	AC 0.025-0.2 VA / DC 0.1-0.7W	
Load between S-A2:	Yes	
Control terminals:	A1-S	
Impulse length:	min. 25 ms / max. unlimited	
Reset time:	max. 150 ms	
Other information		
Power of control input:	$-4^{\circ} \mathrm{F}$ to $131{ }^{\circ} \mathrm{F}\left(-20^{\circ} \mathrm{C}\right.$ to $\left.55^{\circ} \mathrm{C}\right)$	
Storage temperature:	$-22^{\circ} \mathrm{F}$ to $158{ }^{\circ} \mathrm{F}\left(-30^{\circ} \mathrm{C}\right.$ to $\left.70^{\circ} \mathrm{C}\right)$	
Electrical strength:	4 kV (supply-output)	
Operating position:	any	
Mounting:	DIN rail EN 60715	
Protection degree:	IP 40 from front panel / IP 20 terminals	
Overvoltage category:	III.	
Pollution degree:	2	
Max. cable size (mm^{2}):	solid wire max. 1×2.5 or 2×1.5 / with sleeve max. 1×2.5 (AWG 12) (0.4 Nm)	
Dimensions:	$3.5{ }^{\prime \prime} \times 0.7^{\prime \prime} \times 2.5$ " $(90 \times 17.6 \times 64 \mathrm{~mm})$	
Weight:	$2.2 \mathrm{oz} .(62 \mathrm{~g}) \quad 3 \mathrm{oz} .(86 \mathrm{~g})$	
Standards:	UL E308660 (for CRM-81)); EN 61812-1, EN 61010-1	

Time range

	1 s	10 s	1 min	10 min	1 hr	10 hrs
\min	0.1 s	1 s	6 s	1 min	6 min	1 hr
\max	1 s	10 s	60 s	10 min	60 min	10 hrs

Symbol
(RM-81J
(RM-83)

Connection

(RM-81J
(RM-83)

It is possible to connect the load between terminals S-A2 (e.g. contactor, pilot lamp or another device), without compromising the correct operation of the relay (the load is energized as long as the switch button is closed).

Example of an order

(RM-81J/UNI, ZR10s
1x changeover contact, voltage AC/DC 12-240 V, function: delay ON, time 1-10 s.

CRM-83J/UNI, BL1h

$3 x$ changeover contact, voltage $\mathrm{AC} / \mathrm{DC}$ 12-240 V, function: cycler begin with impulse, time 6-60 min.

Functions

ZR - Delay ON
ZN - Delay OFF
BL - Cycler 1:1

Note: the function ZR and ZN is controlled by supply voltage and control input ie. Once phase failure is detected and supply voltage is re applied, The relay automatically makes one cycle.

Description

Delay OFF without supply voltage CRM-82TO

- True OFF" relay - relay timing without supply voltage
- Example of use: back-up source for Delay OFF in case of voltage failure (e.g. emergency lighting, emergency respirator, or protection of el. controlled doors - in case of fire)
- 2 time functions adjustable by rotary switch:
a - Delayed return after disconnecting of supply
e-Delayed start
- Time range (adjustable by rotary switch and fine setting by potentiometer): $0.1 \mathrm{~s}-10 \mathrm{~min}$
- Universal supply voltage AC/DC 12-240 V
- Interruptions in the power supply must take time steps (tens to hundreds of milliseconds)
- Output status indicated by red LED (only in case of supply voltage connection)
- Clamp terminals
- 1-MODULE, DIN rail mounting

Description

Function

Doublestage delay unit SJR-2

- It serves for delay ON of motors star / delta
- Time t1 (star) - time scale 0.1 s - 100 days devided into 10 time ranges
- rough time setting by rotary switch
- Timet2 (delay) between λ / Δ
- time scale 0.1 s - 1 s
- fine time setting by potentiometer
- Voltage range: AC/DC 12-240 V
- Output indication: multifunction red LED
- 1-MODULE, DIN rail mounting
$-4^{\circ} \mathrm{F}$ to $131^{\circ} \mathrm{F}\left(-20^{\circ} \mathrm{C}\right.$ to $\left.55^{\circ} \mathrm{C}\right)$
$-22^{\circ} \mathrm{F}$ to $158^{\circ} \mathrm{F}\left(-30^{\circ} \mathrm{C}\right.$ to $\left.70^{\circ} \mathrm{C}\right)$
4 kV (supply-output)
any
DIN rail EN 60715
IP 40 from front panel / IP 20 terminals
III.

2
max. $1 \times 2.5,2 \times 1.5$,
with sleeve max. 1×2.5 (AWG 12) $(0.4 \mathrm{Nm})$
$3.5^{\prime \prime} \times 0.7^{\prime \prime} \times 2.5^{\prime \prime}(90 \times 17.6 \times 64 \mathrm{~mm})$
3 oz. (84 g)
UL E308660; EN 61812-1, EN 61010-1

Symbol
 Symbol

Connection

Description

Time ranges t 1

Asymmetric cycler CRM-2H

- Multifunction time relay (6 functions and 6 time ranges), economic version of CRM-91H
- To be used for electrical appliances, control of lights, heating, motors, pumps, fans, etc.
- 6 functions: - 3 time functions controlled by supply voltage
- 3 time functions controlled by control input
- Easy to use function and time-range setting by rotary switches
- Time scale 0.1 s - 10 hrs divided into 6 range:
($0.1 \mathrm{~s}-1 \mathrm{~s} / 1 \mathrm{~s}-10 \mathrm{~s} / 0.1 \mathrm{~min}-1 \mathrm{~min} / 1 \mathrm{~min}-10 \mathrm{~min} / 0.1 \mathrm{hrs}-1 \mathrm{hrs} / 1 \mathrm{hrs}-10 \mathrm{hrs}$)
- Universal voltage range: AC $24-240 \mathrm{~V}, \mathrm{DC} 24 \mathrm{~V}$
- Multifunction red LED output indicator flashes or shines depending on the status of output
- 1-MODULE, DIN rail mounting

Technical parameters	CRM-61
Number of functions:	6
Supply terminals:	$\mathrm{A} 1-\mathrm{A} 2$
Supply voltage:	$\mathrm{AC} 24-240 \mathrm{~V}(\mathrm{AC} 50-60 \mathrm{~Hz})$ and DC 24 V
Burden:	$\mathrm{AC} 0.7-3 \mathrm{VA} / \mathrm{DC} 0.5-1.7 \mathrm{~W}$
Supply voltage tolerance:	$15 \% ;+10 \%$
Supply indication:	green LED
Time ranges:	$0.1 \mathrm{~s}-10 \mathrm{~h}$
Time setting:	rotary switch and potentiometer
Time deviation:	$5 \%-$ mechanical setting
Repeat accuracy:	$0.2 \%-$ set value stability
Temperature coefficient:	$0.01 \% /{ }^{\circ} \mathrm{F}, \mathrm{at}=68^{\circ} \mathrm{F}\left(0.01 \% /{ }^{\circ} \mathrm{C}\right.$, at $\left.=20^{\circ} \mathrm{C}\right)$

Output
Number of contacts:
Current rating:

Output indication:

Electrical life resistive load:
Controlling
Control. voltage:
Control power input:
Load between S-A2:
Control. terminals:
Max. capacity of cable control:
Impulse length:
Reset time:
Other information

Operating temperature:	$-4^{\circ} \mathrm{F}$ to $131{ }^{\circ} \mathrm{F}\left(-20^{\circ} \mathrm{C}\right.$ to $\left.55^{\circ} \mathrm{C}\right)$
Storage temperature:	$-22^{\circ} \mathrm{F}$ to $158{ }^{\circ} \mathrm{F}\left(-30^{\circ} \mathrm{C}\right.$ to $\left.70^{\circ} \mathrm{C}\right)$
Electrical strength:	4 kV (supply-output)
Operating position	any
Mounting:	DIN rail EN 60715
Protection degree:	IP 40 from front panel / IP 10 terminals
Overvoltage category:	III.
Pollution degree:	2
Max. cable size (mm^{2}):	$\begin{gathered} \max .2 \times 2.5, \text { max. } 1 \times 4, \\ \text { with sleeve max. } 1 \times 2.5,2 \times 1.5 \text { (AWG } 12)(0.4 \mathrm{Nm}) \end{gathered}$
Dimensions:	$3.5{ }^{\prime \prime} \times 0.7^{\prime \prime} \times 2.5$ " $90 \times 17.6 \times 64 \mathrm{~mm}$)
Weight:	2.4 oz. (69 g)
Standards:	UL E308660; EN 61812-1, EN 61010-1

Symbol

Connection

Function

 Cycler beginning with impulse after energization
k

Impulse relay with delay, press its delay ON and next press its delay OfF output if it happens before expiration time

Description

Time relay with external potentiometer CRM-91HE, CRM-2HE

Control by external control unit - potentiometer (can be placed / mounted for example on switch board doors or in panel) CRM-91HE: multifunction time relays

- 10 functions -5 time functions controlled by supply voltage
- 4 time functions controlled by control input
- 1 function of latching relay
- Time scale $0.1 \mathrm{~s}-10$ days divided into 10 ranges
($0.1 \mathrm{~s}-1 \mathrm{~s} / 1 \mathrm{~s}-10 \mathrm{~s} / 0.1 \mathrm{~min}-1 \mathrm{~min} / 1 \mathrm{~min}-10 \mathrm{~min} / 0.1 \mathrm{hrs}-1 \mathrm{hrs} / 1 \mathrm{hrs}-10 \mathrm{hrs} / 0.1$ day -1 day / 1 day - 10 days / only ON / only OFF)
CRM-2HE: asymmetric cycler
- 2 time functions - cycler beginning with pulse
- cycler beginning with gap
- function selected via external wired link on control input S-A1

CRM-91HE, CRM-2HE:

- Universal supply voltage AC/DC 12 -240 V
- 1-MODULE, DIN rail mounting
- Possible to connect external potentiometer - max. distance 32.8 ft . $(10 \mathrm{~m})$ from relay

Potentiometer

Potentiometer:	$47 \mathrm{k} \Omega$, linear
Protection degree:	IP 65 from front side / IP 20 from back side
Max. cable size $\left(\mathrm{mm}^{2}\right):$	$1.5 \mathrm{~mm}^{2}$ with sleeve / without sleeve max.2.5 (AWG 12)
Weight:	$0.5 \mathrm{oz} .(15 \mathrm{~g})$
Dimensions:	see page Accessories

EAN code
CRM-4/120V: 8595188155595

- Used for delayed switching of lights in the corridors, entrances, stairways, halls or for delayed finish of fans (WC, bathroom, etc.)
- It is controlled by a button or by several buttons from more places (connected in parallel)
- Operating system switch:

AUTO - normal function according to set time
OFF - permanently OFF (e.g. when changing bulbs)
ON - permanently ON (e.g. while cleaning, servicing)

- Time range: 0.5-10 min
- Time setting by potentiometer
- Supply voltage: AC 120 V
- Protection against button blocking (e.g. a match inserted in a button)
- 1- MODULE, DIN rail mounting

Technical parameters	CRM-4
Function:	delay off reacting to control contact switching
Supply terminals:	A1-A2
Voltage range:	AC $120 \mathrm{~V} / 60 \mathrm{~Hz}$
Burden:	ACmax. $12 \mathrm{VA} / 1.8 \mathrm{~W}$
Supply voltage tolerance:	-15\%; +10\%
Supply indication:	green LED
Time ranges:	0.5-10 min
Time setting:	potentiometer
Time deviation:	10%-mechanical setting
Repeat accuracy:	5% - set value stability
Temperature coefficient:	$0.05 \% /{ }^{\circ} \mathrm{F}$, at $=68{ }^{\circ} \mathrm{F}\left(0.05 \% /{ }^{\circ} \mathrm{C}\right.$, at $\left.=20^{\circ} \mathrm{C}\right)$
Output	
Number of contacts:	1x changeover / SPDT (AgSnO_{2})
Current rating:	Resistive load: $15 \mathrm{~A} / 240 \mathrm{~V} \mathrm{AC} / 24 \mathrm{~V} \mathrm{DC}$ Inductive load: $1 \mathrm{HP} / 240 \mathrm{~V}, 1 / 2 \mathrm{HP} / 120 \mathrm{~V}$
Inrush current:	$30 \mathrm{~A} /<3 \mathrm{~s}$
Min. breaking capacity DC:	500 mW
Output indication:	red LED
Mechanical life:	3×10^{7}
Electrical life resistive load:	0.7×10^{5}
Control	
Control voltage:	AC 120 V
Power on input:	AC0.53 VA
Load between S-A2:	Yes
Control terminals:	A1-S
Impulse length:	min. $25 \mathrm{~ms} / \mathrm{max}$. unlimited
Reset time:	max. 150 ms
Other information	
Operating temperature:	$-4^{\circ} \mathrm{F}$ to $131{ }^{\circ} \mathrm{F}\left(-20^{\circ} \mathrm{C}\right.$ to $\left.55^{\circ} \mathrm{C}\right)$
Storage temperature:	$-22^{\circ} \mathrm{F}$ to $158{ }^{\circ} \mathrm{F}\left(-30^{\circ} \mathrm{C}\right.$ to $\left.70^{\circ} \mathrm{C}\right)$
Electrical strength:	4 kV (supply - output)
Operating position:	any
Mounting:	DIN rail EN 60715
Protection degree:	IP 40 from front panel / IP 20 terminals
Overvoltage category:	III.
Pollution degree:	2
Max. cable size (mm^{2}):	$\begin{aligned} & \text { solid wire max. } 1 \times 2.5 \text { or } 2 \times 1.5 \text {, } \\ & \text { with sleeve max. } 1 \times 2.5 \text { (AWG } 12)(0.4 \mathrm{Nm}) \end{aligned}$
Dimensions:	$3.5^{\prime \prime} \times 0.7^{\prime \prime} \times 2.5$ " $90 \times 17.6 \times 64 \mathrm{~mm}$)
Weight:	2.2 oz . (62 g)
Standards:	EN 60669-2-3, EN 61010-1

Symbol

Connection
It is possible to connect load between S-A2 (e.g. contactor, control of light or any other device), without disturbing a correct function of relay (load is energized while the switch is ON).

Circuit connection

Function

Description

Multifunction time relay CRM-91H, CRM-93H, CRM-9S

- Multifunction time relay can be used for electrical appliances, control of lights, heating, motors, pumps and fans (10 functions, 10 time ranges, multi-voltage, 15 A or $3 \times 8 \mathrm{~A}$ contacts)
- Fulfills all requirements for time relays
- 10 functions: - 5 time functions controlled by supply voltage
-4 time functions controlled by control input
-1 function of latching relay
- Comfortable and well-arranged function and time-range setting by rotary switches
-Time scale $0.1 \mathrm{~s}-10$ days divided into 10 ranges: ($0.1 \mathrm{~s}-1 \mathrm{~s} / 1 \mathrm{~s}-10 \mathrm{~s} / 0.1 \mathrm{~min}-1 \mathrm{~min} / 1 \mathrm{~min}-10 \mathrm{~min} / 0.1 \mathrm{hrs}-1 \mathrm{hrs} /$ 1 hrs - 10 hrs / 0.1 day -1 day / 1 day -10 days / only ON / only OFF)
- CRM-91H, CRM-93H: universal supply voltage AC/DC $12-240 \mathrm{~V}$
- CRM-9S: universal supply voltage AC 12-240 V, absolutely noise-less switching $1 x$ static contactless output (triac) $0.7 \mathrm{~A}(60 \mathrm{~A} /<10 \mathrm{~ms})$
- Multifunction red LED output indicator flashes or shines depending on the status of output
-1-MODULE, DIN rail mounting

Technical parameters	CRM-91H	CRM-93H	CRM-9S
Number of functions:	10		
Supply terminals:	A1-A2		
Voltage range:	AC/DC $12-240 \mathrm{~V}(\mathrm{AC} 50-60 \mathrm{~Hz})$		AC 12-240V ($50-60 \mathrm{~Hz}$)
Burden:	AC 0.7-3 VA / DC 0.5-1.7 W		AC max. 0.35 VA
Supply voltage tolerance:	-15% + 10%		
Supply indication:	green LED		
Time ranges:	0.1 s-10 days		
Time setting:	rotary switch and potentiometer		
Time deviation:	5% - mechanical setting		
Repeat accuracy:	0.2% - set value stability		
Temperature coefficient:	$0.01 \% /{ }^{\circ} \mathrm{F}$, at $=68{ }^{\circ} \mathrm{F}\left(0.01 \% /{ }^{\circ} \mathrm{C}\right.$, at $\left.=20^{\circ} \mathrm{C}\right)$		
Output			
Number of contacts:	1x chang./SPDT (AgNi / Silver Alloy)	3x chang./SPDT (AgNi / Silver Alloy)	1x static contactless output (triac)
Current rating:	Resistive load: $15 \mathrm{~A} / 240 \mathrm{~V} \mathrm{AC} / 24 \mathrm{~V}$ DC Inductive load: 1HP / 240V, 1/2HP / 120V	$\begin{gathered} 8 \mathrm{~A} / 240 \mathrm{VAC} / 24 \mathrm{~V} \mathrm{DC} \\ 1 \mathrm{HP} / 240 \mathrm{~V}, 1 / 2 \mathrm{HP} / 120 \mathrm{~V} \end{gathered}$	$\begin{gathered} 0.7 \mathrm{~A} \\ \mathrm{x} \end{gathered}$
Inrush current:	$30 \mathrm{~A} /<3 \mathrm{~s}$	$10 \mathrm{~A} /<3 \mathrm{~s}$	$60 \mathrm{~A} /<10 \mathrm{~ms}$
Min. breaking capacity DC:	500 m		x
Voltage drop on switch:	X		max. 0.9 V at I max.
Load on B1 terminal:	x		Yes/Imax. 0.7 A
Output indication:	multifunction red LED		
Mechanical life:	3×10^{7}		$>10^{8}$
Electrical life resistive load:	0.7×10^{5}		$>10^{8}$
Controlling			
Power on control input:	AC 0.025-0.2 VA / DC 0.1-0.7 W		AC0.025-0.2 VA
Load between S-A2:	Yes		
Control. terminals:	A1-S		
Impulse length:	min. $25 \mathrm{~ms} / \mathrm{max}$. unlimited		
Reset time:	max. 150 ms		max. 250 ms
Other information			
Operating temperature:	$-4{ }^{\circ} \mathrm{F}$ to $131{ }^{\circ} \mathrm{F}\left(-20^{\circ} \mathrm{C}\right.$ to $\left.55^{\circ} \mathrm{C}\right)$		
Storage temperature:	$-22^{\circ} \mathrm{F}$ to $158{ }^{\circ} \mathrm{F}\left(-30^{\circ} \mathrm{C}\right.$ to $\left.70^{\circ} \mathrm{C}\right)$		
Electrical strength:	4 kV (supply-output)		x
Operating position:	any		
Mounting:	DIN rail EN 60715		
Protection degree:	IP 40 from front panel/ IP 20 terminals		
Overvoltage category:	III.		
Pollution degree:	2		
Max. cable size (mm^{2}):	solid wire max. 1×2.5 or 2×1.5 / with sleeve max. 1×2.5 (AWG 12) (0.4 Nm)		
Dimensions:	$3.5^{\prime \prime} \times 0.7^{\prime \prime} \times 2.5^{\prime \prime}(90 \times 17.6 \times 64 \mathrm{~mm})$		
Weight:	2.26 0z. $(64 \mathrm{~g})$	3.1 oz. (89 g)	$1.8 \mathrm{oz}$. (51 g)
Standards:	UL E308660 (for CRM-91H and CRM-93H); EN 61812-1, EN 61010-1		

Symbol

Connection

 CRM-91H

CRM-93H

CRM-95

Possibility to connect load onto controlling input
It is possible to connect the load (e.g.: contactor) between terminals S-A2, without any interruption of correct relay function.

Function

On Delay (Power On)
When the input voltage U is applied, timing delay t begins. Relay contacts R change state after time delay is complete. Contacts R return to their shelf state when input voltage U is removed. Trigger switch is not used in this function.

Off Delay

When input voltage U is applied, relay contacts R change state immediately b and timing cycle begins. When time delay is complete, contacts return to shelf state. When input voltage U is removed, contacts will also return to their shelfstate. Trigger switch is not used in this function.

Repeat Cycle (Starting Off)

When input voltage U is applied, time delay t begins. When time delay t is complete, relay contacts R change state for time delay t. This cycle will repeat until input voltage U is removed. Trigger switch is not used in this function.

Repeat Cycle (Starting On)

When input voltage U is applied, relay contacts R change state immediately and time delay t begins. When time delay tis complete, contacts return to their shelf state for time delay t. This cycle will repeat until input voltage U is removed. Trigger switch is not used in this function.

Off Delay (S Break)

Input voltage U must be applied continuously. When trigger switch S is closed, relay contacts R change state. When trigger switch S is opened, delay t begins. When delay t is complete, contacts R return to their shelf state. If trigger switch S is closed before time delay t is complete, then time is reset. When trigger switch S is opened, the delay begins again, and relay contacts R remain in their energized state. If input voltage U is removed, relay contacts R return to their shelf state.

Single Shot

Upon application of input voltage U, the relay is ready to accept trigger signal S. Upon application of the trigger signal S, the relay contacts R transfer and the preset time t begins. During time-out, the trigger signal S is ignored. The relay resets by applying the trigger switch S when the relay is not energized.

Single Shot Trailing Edge (Non-Retriggerable)

Upon application of input voltage U , the relay is ready to accept trigger signal S. Upon application of the trigger signal S, the relay contacts R transfer and the prese time t begins. At the end of the preset time t, the relay contacts R return to their normal condition unless the trigger switch S is opened and closed prior to time outt (before preset time elapses). Continuous cycling of the trigger switch S at a rate faster than the preset time will cause the relay contacts R to remain closed. If input voltage U is removed, relay contacts R return to their shelf state.

On/OffDelay

Input voltage U must be applied continuously. When trigger switch S is closed, time delay t begins. When time delay t is complete, relay contacts R the preset time t begins. During time-out, the trigger signal S is ignored. The

g
 S

 change state and remain transferred until trigger switch S is opened. If input voltage U is removed, relay contacts R return to their shelf state.
Latching relay

Input voltage U must be applied continuously. Output changes state with every trigger switch S closure. If input voltage U is removed, relay contacts R return to their shelf state.

Pulse generator

Upon application of input voltage U, a single output pulse of 0.5 seconds is delivered to relay after time delay t. Power must be removed and reapplied to repeat pulse. Trigger switch is not used in this function.

0.1-1 min

1-10 days

1-10 min

only ON

0.1-1h

only OFF

Description

Output contacts of CRM-93H do not allow switching of different phases or 3 -phase voltages (voltage $>250 \mathrm{~V}$).

When mounting into steal-plated switchboards, it is necessary to keep a safety distance of min. 3 mm from terminal's screws 35-36-38 and 25-26-28 towards the shutter of a switchboard.

Programmable digital relay PDR-2/A, PDR-2/B

$\begin{array}{ll}\text { PDR-2A/UNI: } & 8594030333044 \\ \text { PDR-2B /UNI. } & 8594030333068\end{array}$

Connection

PDR-2/A

Function

Super-multifunction relay SMR-T, SMR-B

- Multifunction relay designed for installation into a wiring box or under wall-switch in an existing electrical installation
- Advantageous and fast solution for exchanging standard wall-switch for a switch controlled by time or for an impulse relay controlled by a button
SMR-T
- 3-wire connection, works without the connection of a neutral conductor
- Power output: 10-80 VA
- Between input S and neutral wire is possible connect any load R, L, or C - that is not necessary

SMR-B
-4-wire connection

- 10 functions
- Enables switching of fluorescent lights and also energy saving lights
- Suitable for switching loads greater than SMR-T, for example pulse relay, stair automatic switch, switching of ladder radiators in bathrooms
- Independent galvanically separated input AC/DC 5-250V, for example for control from a security system

EAN code
SMR-T/120V: 8595188155588
SMR-B/120V: 8595188155571

Technical parameters	SMR-T	SMR-B
Number of functions:	9	10
Connection:	3 -wire, without neutral	4-wire, with neutral
Voltage range:	AC $120 \mathrm{~V} / 60 \mathrm{~Hz}$	
Power input (no operation / make):	0.8/3VA	max. 1/1VA
Supply voltage tolerance:	-15\%; +10\%	
Time ranges:	0.1 s-10 days	
Time setting:	via rotaty switch	
Time deviation:	10% - mechanical setting	
Repeat accuracy:	2% - set value stability	
Temperature coefficient:	$0.1 \% /{ }^{\circ} \mathrm{F}$, at $=68{ }^{\circ} \mathrm{F}\left(0.1 \% /{ }^{\circ} \mathrm{C}\right.$, at $\left.=20^{\circ} \mathrm{C}\right)$	
Output		
Number of contacts:	1 xtriac	1x NO-SPST (AgSnO_{2})
Resistive load:	10-80 VA	$15 \mathrm{~A} / 240 \mathrm{~V}$ AC/ 24 V DC
Inductive load:	$10-50 \mathrm{VA}$	$1 \mathrm{HP} / 240 \mathrm{~V}, 1 / 2 \mathrm{HP} / 120 \mathrm{~V}$
Control		
Control voltage:	AC 120 V	AC $120 \mathrm{~V}, \mathrm{UNH}-5-250 \mathrm{~V}$ AC/DC
Control current:	3 mA	
Impulse length:	min. $50 \mathrm{~ms} / \mathrm{max}$. unlimited	
Other information		
Operating temperature:	32.. $122^{\circ} \mathrm{F}\left(0 . .50^{\circ} \mathrm{C}\right)$	
Operating position:	any	
Mounting:	free at connecting wires	
Protection degree*:	IP30 in standard conditions	
Overvoltage category:	III.	
Pollution degree:	2	
Fuse:	F 1A/250V	x
Connection (cross-section/ lenght):	$4 \times$ sol. wir., $0.75 \mathrm{~mm}^{2}$ (AWG 18) / $3.5^{\prime \prime}(90 \mathrm{~mm})$	$2 x C Y, 0.75 \mathrm{~mm}^{2}$ (AWG 18), $2 \mathrm{xCY}, 2.5 \mathrm{~mm}^{2}$ (AWG 10) / $3.5^{\prime \prime}$ (90 mm)
Dimensions:	$1.9^{\prime \prime} \times 1.9^{\prime \prime} \times 0.5{ }^{\prime \prime}(49 \times 49 \times 13 \mathrm{~mm})$	$1.9^{\prime \prime} \times 1.9^{\prime \prime} \times 0.8^{\prime \prime}(49 \times 49 \times 21 \mathrm{~mm})$
Weight:	0.92 oz. (26 g)	1.9 oz . (53 g)
Standards:	EN 61812-1, EN 61010-1	

* for more information see page 30

Time ranges

$0.1-1$ min

$1-10 \mathrm{~min}$

Function

Function a - delay OFF on entrering edge
output times when it is switched. Each following pressing (max. 5x)
increases time. Long pressing swithes output off.

Function b - delay OFF on downward edge output times after button is swithed off, switches immediately

Function c- delay OFF on downward edge
after switching off output switches on and times

Function d - cycler - flasher impulsem
output cycles in regular interval, cycler starts with an impulse

Function e-puls shift
delay on after the switch is switched on and delay on after it is switched off

Connection SMR-T, SMR-B

Fan controlling depending on the lighting

Input for external control voltage AC/DC 5-250 V

Function f-delay ON
delay on after switch is switched on until it is switched off
Function g - impulse relay
switches on by a press, another pressing switches the output off. The length of pressing doesn't matter, it is possible to set reaction delay by a potentiometer and thus eliminate rebound of a button

Function h - impulse relay with delay
one press switches on, another one switches the output off in case it is
done before the end of timing

Function i - cycler starting with pause
output cycles in regular intervals, cycler starts with a pause

Function j^{*} - cycler starting with gap
delay ON until switched off until it is de-energized or a switch is pressed again Note: * Function j is valid only for SMR-B

Note

SMR-T is not intended for switching capacity load (energy saving bulbs and LED lights with capacity power etc.), these products are only intended for switching resistive and inductive loads (incandescent bulbs, fans, etc.).

SMR-B with relay output is intended to other types of load. Using this output it is possible to switch the load of R, L or C -values listed in the load table. Between inputs S and neutral wire is possible to connect any load of R, L or C, however this is not condition.

Control of an appliance by button

After the light bulb switch is switched off, fan starts operating and after set time switches off.

- This time switch clock SHT is used to control various appliances in real time; daily, weekly, monthly and yearly mode
- Switching: according the program (AUTO) / constantly manually, manually to next program change / random (CUBE)
- „Holiday program" option to choose an interval when the device

	Output		Time programm				
	1 channel	2 channel	day	week	month	year	
	\bullet		\bullet	\bullet			
SHT-1/2		\bullet	\bullet	\bullet			
SHT-3	\bullet		\bullet	\bullet	\bullet	\bullet	
SHT-3/2		\bullet	\bullet	\bullet	\bullet	\bullet	

- Automatic conversion summer / winter time
- Sealable cover of front panel, easy controlling via 4 buttons
- 100 memory places, clear LCD display, min. interval 1 s
- Voltage range: AC/DC 12-240 V
- Cyclic output
- Pulse output

SHT-1, SHT-3: one channel version, 2-MODULE, DIN rail mounting, clamp terminals
SHT-1/2, SHT-3/2: two channel version, 2-MODULE, an individual program can be run on each channel

Symbol / Connection

Description of displayed elements on the screen
The choice of switching mode
Indication (1st channel)
Output $0 \mathrm{~N} /$ OFF
Random switching mode
Manual switching mode
Channel 1 (bargraph)

Description

Auxiliary and Power relays

Overview table

				Other features				
$\stackrel{\sim}{2}$	$\stackrel{\text { 듷 }}{0}$				$\begin{aligned} & \text { 苟 } \\ & \stackrel{y}{c} \end{aligned}$			
VS116U	1M-DIN	A//DC 12.240 V	1x15 A changeover/ SPDT	\bullet	\bullet	\bullet	as a separation relay (4KV), direct switching of appliances up to 4000VA (e.g. heaters), well visible signalization, noiseless	
VS308U	1M-DIN	AC/DC 12.240 V	3x8 A changeover/ TPDT	\bullet	\bullet	\bullet	a"multiplication" of contacts, $3 x$ changeover contact/ 3TPDT only in 1-MODULE, well visible signalization, noiseless	
VS316/24	1M-DIN	A//DC 24 V	3x15 A changeover/ TPDT	\bullet	\bullet	\bullet	3x changeover contact in 1-MODULE, possibility of "multiplication" of contacts and in the same time possibility of switching high output, possibility of 3 phase switching	
VS316/120	1M-DIN	AC230V	3x15 A changeover/ TPDT	\bullet	\bullet	\bullet	as VS316/24, but AC 120V	

Power relays modular type VS

- Power relay used for switching larger load output, strengthen or „multiplying" contacts of the existing device

Type	Current rating	Number of contacts		Design
Supply terminals				
VS116U	15 A	1	DIN (1M)	A1-A2 12-240V AC/DC
VS308U	8 A	3	DIN (1M)	A1-A2 12-240V AC/DC
VS316/24	15 A	3	DIN (1M)	A1-A2 24V AC/DC
VS316/120	15 A	3	DIN (1M)	A1-A2 120V AC

- Relays VS316/24, VS316/120 enable connection to a 3-phase circuit
- In the design 1-MODULE, DIN rail mounting, output status indicated by high intensity LED with choice of LED color (red, green, yellow, blue or white LED*)

Current rating:	x changeover / SPDT $\left(\mathrm{AgSnO}_{2}\right)$	geover/TPD (AgNi/silver Alloy)		(
	Resistive load: $15 \mathrm{~A} / 240 \mathrm{~V}$ AC/24V DC Inductive load: $1 \mathrm{HP} / 240 \mathrm{~V}, 1 / 2 \mathrm{HP} / 120 \mathrm{~V}$	$\begin{gathered} 8 \mathrm{~A} / 240 \mathrm{~V} \mathrm{AC} / 24 \mathrm{~V} D \mathrm{C} \\ 1 \mathrm{HP} / 240 \mathrm{~V}, 1 / 2 \mathrm{HP} / 120 \mathrm{~V} \end{gathered}$		
Inrush current:	$30 \mathrm{~A} /<3 \mathrm{~s}$	$10 \mathrm{~A} /<3 \mathrm{~s}$		
Min. breaking capacity DC :	500 mW			
Output indication:	high intensity of LED			
Mechanical life:	3×10^{7}		1×10^{7}	
Electrical life resistive load:	0.7×10^{5}		1×10^{5}	
Time between switching:	min. 2 s		20 ms	50 ms

VS308U

VS316/24

VS316/120

EAN codes

VS116U/red 8595188124607 VS116U/green 8595188136433 VS116U /yellow 8595188138499 VS116U/white 8595188138482 VS116U /blue 8595188138475

VS308U /red 8595188130103 VS308U/green 8595188136440 VS308U /yellow 8595188138529 VS308U/white 8595188138512 VS308U / blue 8595188138505

VS316/24 red 8595188135771 VS316/24 green 8595188136105 VS316/24 yellow 8595188136129 VS316/24 white 8595188136099 VS316/24 blue 8595188136112

VS316 /120 red	8595188155656
VS316 /120 green	8595188155670
VS316/120 yellow	8595188155687
VS316 /120 white	8595188155649
VS316 /120 blue	8595188155663

Notes

Max. time of changeover of contact is 10 ms .
VS316/24 or VS316/120 enables switching of different phases or 3 phase voltage.

* Possibility to choose blue, white and yellow color of LED for power relays line VS in case of minimal order quantity 100 pcs.

Description

VS116U

VS308U

VS316/24

Dimmers

Overview table

$\stackrel{\text { 2 }}{2}$	$\frac{\overline{5}}{\bar{\Delta}}$		Type of dimmed load					Output				$\begin{array}{\|c\|} \hline \begin{array}{c} \text { Method of phase } \\ \text { regulation } \end{array} \\ \hline \end{array}$		$\begin{gathered} \text { Control } \\ \text { principal } \end{gathered}$			
							$\begin{aligned} & \text { 鲁 } \\ & \text { (20 } \end{aligned}$		Rated load			든릉링					
				L	${ }^{\frac{2}{5} \text { a }}$	$\stackrel{\rightharpoonup}{\mathrm{u}}$	虽		R	L	C						
LIC-2	1M-DIN	AC 100-250V	\bullet	\bullet	\bullet	\bullet	-	$\begin{gathered} \hline 2 x \\ \text { MOSFET } \end{gathered}$	x	x	x	\bullet	\bullet	\bullet	\bullet	control unit for dimmers or electronic ballasts with analog control $0-10 \mathrm{~V} / 1-10 \mathrm{~V}$	31
DIM-15	1M-DIN	AC 120V	\bullet	-	\bullet	\bullet	-	$\begin{gathered} 2 x \\ \text { MOSFET } \end{gathered}$	150W	150 W	150 W	x	x	x	x	designated for dimming of: R, L, C, , ESL, LED	
SMR-M	BOX	AC 120 V	\bullet	-	-	\bullet	-	$\begin{array}{c\|} \hline 2 x \\ \text { MOSFET } \end{array}$	80 W	80 W	80 W	\bullet	\bullet	x	x	designated for dimming of: R, L, C, ESL, , LED	32

Key to symbols

type of load (symbols)	$\begin{gathered} \text { bubss, } \\ \text { halogen lamps } \end{gathered}$	low-voltage el.bulbs $12 / 24 V$ wound transformers	low-voltage el.bulbs $12 / 24 \mathrm{~V}$ electronic transformers	ESL dimmable compact flueresent lamps	LEDamps
		$F_{-}^{-1 \mid L}$	$\stackrel{-1}{\square}$ C	$\begin{gathered} \text { प[-7 } \\ \text { ESL } \end{gathered}$	(4) LED

Demonstrated symbols are informative.

Expandatory:
Dimmer with designated load:
R - resistive
L-inductive
R,L,C C-capacitive
ESL - energy saving lamps
LED - LED bulbs

IPxx protection - under normal conditions: normal conditions are understood as such conditions of operating an electrical device, installation and power supply network for which the entire device is designed, produced and installed. Upon these normal conditions of use and upon normal maintenance, all protective devices must be effective throughout the entire expected service life of the product.

Recommendation for mounting:
Recommendation for mounting modular dimmers: leave a gap of min. 0.5 module (approx. $0.4^{\prime \prime} / 9 \mathrm{~mm}$) on side of the device to ensure better cooling of the device.

Lighting intensity controller LIC-2

- Serves as control unit for dimmers or electronic ballasts with analog control 0-10 V / 1-10 V
- Keeps a preset lighting intensity (automatic regulation)
- Control operating modes using existing button
- switch OFF
- automatic regulation
- cleaning (maximum illumination level)
- Setting the basic parameters of lighting is performed by potentiometers
- min. brightness of illumination
- maximum illumination level
- speed of dimming / illumination
- Blocking the automatic control using external signal
- Power supply AC $100-250 \mathrm{~V}$
- 1-MODULE, DIN rail mounting

Connection

Device description

Function

Control button functions

- short press (<0.5s) - always switches off output (relay and output voltage)
- Ionger press (0.5...3s) - runs automatic regulation of brightness level (according to sensor)
- long press (> 3s) - sets the max. brightness level (CLEANING mode).

Blocking input function

- switches off lighting - only in automatic regulation mode (has no influence in CLEANING mode), e.g. for central switching off of lighting

Output relay

- switches on always upon switching on the lighting using the button if the DC output voltage is greater than 0.1 V (for the mode 0-10V) or 1V (for the mode 1-10V)
upon switching off the light, the relay opens if the output voltage drops below the stated limits

Red LED

- illuminates upon active ouput (at any brightness level)
flashes upon activation of blocking

In position SET and MIN, the brightness level is set by potentiometer P2 (green LED also flashes). If the required brightness level is attained, the trimmer P1 is set to the RUN position. The brightness level is thereby set (green LED lights up permanently).

Universal dimmer DIM-15, SMR-M

- Designed for dimming of: a) R - bulbs, halogen lamps

> b) L- low-voltage el.bulbs $12 / 24 \mathrm{~V}$ wound transformers c) C-low-voltage el.bulbs $12 / 24 \mathrm{~V}$ electronic transformers d) ESL - dimmable compact fluorescent lamps e) LED - LED lamps

- Enables gradual setting of luminance by push-button (non-detent) or parallel buttons
- Returns to last state upon re-energization
- Type of light source is set by switch-over on the front panel of device
- Min. luminance, set by potentiometer on the front panel, eliminates flashing of light sources
- Supply voltage 120 V AC

DIM-15

- Output status is indicated by red LED:
- shines when output is active
- flashes while heating overload, at the same time output is disconnected
- 1-MODULE version, DIN rail mounting, saddle terminals

SMR-M

- Button-controlled dimmer intended to be installed in an installation box into the existing electrical wiring
- Protection against excessive temperature inside the device - switches off the output

Technical parameters	DIM-15	SMR-M
Supply terminals:	A1-A2	X
Voltage range:	x	4 -wire, with neutral
Operating range:	AC $120 \mathrm{~V} / 60 \mathrm{~Hz}$	
Apparent power:	-15\%; +10\%	
Loss power:	max. 1.5VA	
Dissipated power:	max. 0.7 W	
Supply indication:	green LED	
Control		
Control terminals:	A1-T	x
Control wire:	x	L-S
Control voltage:	AC 120 V	
Control input power:	AC 0.3-0.6 VA	
Control impulse lenght:	min. 80 ms / unlimited	
Output		
Contactless:	$2 \times \mathrm{MOSFET}$	
Load:	$150 \mathrm{~W}(\mathrm{at} \cos \varphi=1)^{*}$	$80 \mathrm{~W}(\mathrm{at} \cos \varphi=1)^{*}$
Output status indication:	red LED	x
Other information		
Operating temperature:	$-4^{\circ} \mathrm{F}$ to $95^{\circ} \mathrm{F}\left(-20^{\circ} \mathrm{C}\right.$ to $\left.35^{\circ} \mathrm{C}\right)$	
Storing temperature:	$-4^{\circ} \mathrm{F}$ to $140{ }^{\circ} \mathrm{F}\left(-20^{\circ} \mathrm{C}\right.$ to $\left.60^{\circ} \mathrm{C}\right)$	
Operating position:	any	
Mounting:	DIN rail EN 60715	free at connecting wires
Protection degree:	IP40 from front panel/ IP10 clips	IP30 in standard conditions**
Overvoltage category:	III.	
Pollution level:	2	
Terminal wire capacity (mm^{2}):	max. 2×2.5, with sleeve max. 1×2.5, max. 2×1.5 (AWG 12) (0.4 Nm)	X
Connection: (cross-section/ lenght):	x	solid w. CY, $0.75 \mathrm{~mm}^{2}$ (AWG 18) / $3.5^{\prime \prime}(90 \mathrm{~mm})$
Dimensions:	$3.5{ }^{\prime \prime} \times 0.7^{\prime \prime} \times 2.5$ " $(90 \times 17.6 \times 64 \mathrm{~mm})$	$1.9^{\prime \prime} \times 1.9^{\prime \prime} \times 0.8{ }^{\prime \prime}(49 \times 49 \times 21 \mathrm{~mm})$
Weight:	1.98 oz. (57 g)	1.3 oz. (38 g)
Standards:	EN 60669-2-1, EN 61010-1	

* Due to a large number of light source types, the maximum load depends on the internal construction of dimmable light sources and their power factor $\cos \varphi$.
The power factor of dimmable LEDs and ESL bulbs ranges from $\cos \varphi=0.95$ to 0.4 .
An approximate value of maximum load may be obtained by multiplying the load capacity of the dimmer by the power factor of the connected light source.
** For more information see page 30 .

Symbol

Light source type setting

Connection

DIM-15

SMR-M

Description

Functions and controlling

- short button press (<0.5s) turns the light off or on
- Iong press (>0.5s) enables slight regulation of light intensity
- setting of minimal luminance is possible only during decreasing of luminance by long button press
- setting of minimal luminance by saving fluorescent lamps serves for harmonizing of lowest light intensity prior its unprompted switching off

Luminance setting:

LED, R, L, C:

- if the light is turned off, short press (<0.55) switches the light onto last set luminance level ESL:
- when light is off, short impulse turns lamp on and then luminance is decreased to set level

Connection example

Additional information

- it is not possible to dim energy-saving lamps without marking: dimmable
- an incorrect setting of light source has effect only on dimming range, it means neither dimmer or load get damaged
- max. number of dimmable light sources depends on their internal structure
- it is not recommended to connect light sources with different types and brands, to one dimmer

Notes

Power supplies

Overview table

			Output						Protection against overload				
$\stackrel{\otimes}{2}$	$\frac{\stackrel{5}{5}}{\stackrel{\rightharpoonup}{5}}$		¢	¢					$\begin{aligned} & \stackrel{0}{3} \\ & \frac{0.0}{0} \\ & \stackrel{n}{n} \end{aligned}$				
PSB-10-12	MIIN-BOX	AC 110-250V	x	\bullet	\bullet	DC 12 V	0.84A	s	x	\bullet	\bullet	stabilized switching power supply with fixed output voltage 12V/10 W, box	
PSB-10-24	MIN-BOX	AC 110-250V	x	\bullet	\bullet	DC24V	0.42 A	s	x	\bullet	\bullet	stabilized switching power supply with fixed output voltage $24 \mathrm{~V} / 10 \mathrm{~W}$, box	
PS-30-12	3M-DIN	AC 100-250V	x	\bullet	\bullet	DC 12 V	2.5 A	S	\bullet	\bullet	\bullet	stabilized switching power supply with fixed output voltage $12 \mathrm{~V} / 30 \mathrm{~W}$, 3 module	
PS-30-24	3M-DIN	AC 100-250V	x	\bullet	\bullet	DC 24V	1.25 A	s	\bullet	\bullet	\bullet	stabilized switching power supply with fixed output voltage $24 \mathrm{~V} / 30 \mathrm{~W}$, 3 module	36
PS-30-R	3M-DIN	AC 100-250V	x	\bullet	\bullet	DC 12-24V	$\begin{aligned} & 2.5 \mathrm{~A}- \\ & 1.25 \mathrm{~A} \end{aligned}$	s	\bullet	\bullet	\bullet	stabilized switching power supply with fixed output voltage $12-24 \mathrm{~V} / 30$ W, 3 module	
PS-100-12	6M-DIN	AC 100-250V	x	\bullet	\bullet	DC 12V	8.4A	s	\bullet	\bullet	\bullet	stabilized switching power supply with fixed output voltage $12 \mathrm{~V} / 100 \mathrm{~W}$, 6 module	
PS-100-24	6M-DIN	AC 100-250V	x	\bullet	\bullet	DC 24V	4.2 A	s	\bullet	\bullet	\bullet	stabilized switching power supply with fixed output voltage $24 \mathrm{~V} / 100 \mathrm{~W}$, 6 module	

EAN code

PSB-10-12: 8595188145022 PSB-10-24: 8595188143783

PS-30-12V: 8595188137966 PS-30-24V: 8595188139045
PS-30-R: $\quad 8595188136655$
PS-100-12V: 8595188137195
PS-100-24V: 8595188139021

- PSB-10: switching stabilized power supplies with fixed output voltage, for mounting into an installation box

PSB-10-12 - stabilized power supply 12V/10W
PSB-10-24 - stabilized power supply 24V/10W

- PS-30: switching stabilized power supplies, version 3-module

PS-30-12 - stabilized power supply with fixed output voltage $12 \mathrm{~V} / 30 \mathrm{~W}$
PS-30-24 - stabilized power supply with fixed output voltage $24 \mathrm{~V} / 30 \mathrm{~W}$
PS-30-R - stabilized regulated power supply $12-24 \mathrm{~V} / 30 \mathrm{~W}$

- PS-100: stabilized power supply with fixed output voltage, version 6-module

PS-100-12 - stabilized power supply $12 \mathrm{~V} / 100 \mathrm{~W}$
PS-100-24 - stabilized power supply $24 \mathrm{~V} / 100 \mathrm{~W}$

- Output current is limited by electronic fuse, in case maximal current is exceeded, the device switches off and after a shot time interval it again switches on.
- Indication of output voltage by green LED on front panel (except PSB-10)
- Temperature protection - if temperature is exceeded, the device switches off and after cooled down, it switches on again

Technical parameters	PSB-10-12	PSB-10-24	PS-30-12	PS-30-24	PS-30-R	PS-100-12	PS-100-24
Input							
Voltage range:	AC $110-250 \mathrm{~V} / 50-60 \mathrm{~Hz}$		AC 100-250 V/ $50-60 \mathrm{~Hz}$			AC 100-250 V/ $50-60 \mathrm{~Hz}$	
Burden without load (max.):	$3 \mathrm{VA} / 0.5 \mathrm{~W}$		$9 \mathrm{VA} / 1 \mathrm{~W}$	$10 \mathrm{VA} / 1.5 \mathrm{~W}$	10VA / 1.7 W	$12 \mathrm{VA} / 2 \mathrm{~W}$	
Burden with full load (max.):	$26 \mathrm{VA} / 13 \mathrm{~W}$		$70 \mathrm{VA} / 37 \mathrm{~W}$			$195 \mathrm{VA} / 121 \mathrm{~W}$	
Protection:	x		fuse T2A			fuse T3.15 A	
Output							
Output voltage DC / max. current:	$12 \mathrm{~V} / 0.84 \mathrm{~A}$	$24 \mathrm{~V} / 0.42 \mathrm{~A}$	12.2V/2.5 A	24.2V/1.25 A	$\begin{gathered} 12.2 \mathrm{~V} / 2.5 \mathrm{~A} \\ 24.2 \mathrm{~V} / 1.25 \mathrm{~A} \end{gathered}$	$12.2 \mathrm{~V} / 8.4 \mathrm{~A}$	24.2V/4.2 A
Tolerance of output voltage:	$\pm 2 \%$		$\pm 2 \%$		$\pm 3 \%$	$\pm 2 \%$	
Output indication:	x		green LED				
Wave of off-load output voltage:	40 mV		30 mV		40 mV	1V	
Wave of output voltage with max load:	380 mV		80 mV		500 mV	40 mV	
Time delay after connection:	max. 1s		max. 5 s		max. is	max. 3 s	
Time delay after over-load:	max. is		max. 1s			max. 0.5 s	
Efficiency:			> 82\%		$>81 \%$	> 82%	
Electronic fuse:	electronic protections short-circuit, over load, over voltage (from 120\% of rated output)						
Other information							
Working humidity:	$20 . .90 \% \mathrm{RH}$						
Operating temperature:	$-4^{\circ} \mathrm{F}$ to $104^{\circ} \mathrm{F}\left(-20^{\circ} \mathrm{C}\right.$ to $\left.40^{\circ} \mathrm{C}\right)$						
Storage temperature:	$-40^{\circ} \mathrm{F}$ to 185	${ }^{\circ} \mathrm{C}$ to $\left.85^{\circ} \mathrm{C}\right)$	$-13^{\circ} \mathrm{F}$ to $158{ }^{\circ} \mathrm{F}\left(-25^{\circ} \mathrm{C}\right.$ to $\left.70^{\circ} \mathrm{C}\right)$			$-40^{\circ} \mathrm{F}$ to $185^{\circ} \mathrm{F}\left(-40^{\circ} \mathrm{C}\right.$ to $\left.85^{\circ} \mathrm{C}\right)$	
Electrical strength input- output:	4 kV						
Protection degree:	IP30		IP40 device / IP20 in-built in distribution board				
Overvoltage category:	11.						
Polutioon degree:	2						
Max. cable size (mm^{2}):	x		solid wire max. 1×2.5 or 2×1.5 / with sleeve max. 1×1.5 (AWG 12) (0.4 Nm)				
Connection: (cross-section/lenght):	solid wire $\mathrm{CY}, 4 \times 0.75 \mathrm{~m}$	$5^{\prime \prime}$ (90 mm) (AWG 18)	x				
Dimensions:	$1.9{ }^{\prime \prime} \times 1.9^{\prime \prime} \times 0.8$	$\times 48 \times 21 \mathrm{~mm})$	$3.5{ }^{\prime \prime} \times 2.1$ " $\times 2.6$ " $(90 \times 52 \times 65 \mathrm{~mm})$			3.5 " 4.1 " $\times 2.6^{\prime \prime}(90 \times 105 \times 65 \mathrm{~mm}$)	
Weight:			5.6 oz . 1588 g)			12.9 oz. (367 g)	
Standards:	EN 61204-1, EN 61204-3, EN 61204-7						

Connection

$\begin{aligned} & \text { PSB-10-12 } \\ & \text { (PSB-10-24) } \end{aligned}$	AC $110-250 \mathrm{~V}$ $50 \mathrm{~Hz} / 60 \mathrm{~Hz}$ N	$\begin{gathered} \text { PS-30-12 } \\ \text { (PS-30-24) } \end{gathered}$	AC $100-250 \mathrm{~V}$ $50 \mathrm{~Hz} / 60 \mathrm{~Hz}$ N
	$\begin{gathered} ++12 \mathrm{~V} / 0.84 \mathrm{~A} \\ \text { DC } \\ \text { (DC } 24 \mathrm{~V} / 0.42 \mathrm{~A}) \end{gathered}$		$\begin{gathered} ++12 \mathrm{~V} / 2.5 \mathrm{~A} \\ (\mathrm{DC}(24 \mathrm{~V} / 1.25 \mathrm{~A}) \end{gathered}$

PS-30-R

$\begin{aligned} & \text { PS-100-12 } \\ & \text { (PS-100-24) } \end{aligned}$	AC $100-250 \mathrm{~V}$ $50 \mathrm{~Hz} / 60 \mathrm{~Hz}$

Connection

PSB-10-12 / PSB-10-24
designated for installation into an installation box. Suitable for controlling of lighting sources, thermo valves, shutter engines, etc.

PS-30-R

Supply terminals

PS-100-12

Twilight switches

Accessories
 of twilight switches：

Photosensor SKS Protection degree：IP56． It is suitable for mounting on the wall or in panel．

Memory relays

Overview table

$\stackrel{\sim}{2}$	$\begin{aligned} & \text { 듬 } \\ & \hline \stackrel{y}{0} \end{aligned}$	글른各		0ther					
					$\begin{aligned} & \frac{\text { त }}{0} \\ & \frac{\grave{2}}{\hat{6}} \end{aligned}$				
SOU－1	1M－DIN	AC／DC 12－240V （AC $50-60 \mathrm{~Hz}$ ）		－	x	x	－	Is used to control lights on the basis of ambient light intensity	39
SOU－3	IP65	$\begin{aligned} & \text { AC } 120 \mathrm{~V} \\ & (\mathrm{AC} 60 \mathrm{~Hz}) \end{aligned}$	$\begin{gathered} \text { 1x15 A } \\ \text { N0-SPST } \end{gathered}$	x	x	－	x	Is used to control lights on the basis of ambient light intensity	40

$\stackrel{\sim}{2}$	高	츨흔咅		Other				
					$\begin{aligned} & \hline \stackrel{\rightharpoonup}{ㄹ} \\ & \text { a } \\ & \text { 흔 } \\ & \text { 흥 } \end{aligned}$	或		
MR－41	1M－DIN	AC／DC 12－240V （AC $50-60 \mathrm{~Hz}$ ）	$\begin{gathered} 1 \times 15 \mathrm{~A} \\ \text { changeover } \end{gathered}$	－	－	1	Latching relays，controlled by buttons from several locations can replace three way switches or	
MR－42	1M－DIN	AC／DC 12－240V （AC $50-60 \mathrm{~Hz}$ ）	$\begin{aligned} & 2 \times 15 \mathrm{~A} \\ & \text { changeover } \end{aligned}$	\bullet	－	2	wires），installation gets more transparent and faster for mounting．	

Twilight switch SOU-1

- Usenting of photosensor

EAN codes:
SOU-1/UNI + photosensor SKS: 8595188121019
Photosensor SKS: 8594030337288

Technical parameters	SOU-1
Supply terminals:	A1-A2
Voltage range:	AC/DC $12-240 \mathrm{~V}(\mathrm{AC} 50-60 \mathrm{~Hz})$
Burden:	AC 0.7-3 VA / DC $0.5-1.7 \mathrm{~W}$
Supply voltage tolerance:	-15% + 10%
Supply indication:	green LED
Time delay:	0-2 min
Time delay setting:	potentiometer
Illumination rang 1):	1-100 lx
Illumination rang 2):	100-50000 lx
Output	
Number of contacts:	1x changeover / SPDT (AgSnO_{2})
Current rating:	Resistive load: $15 \mathrm{~A} / 240 \mathrm{~V} \mathrm{AC} / 24 \mathrm{~V} \mathrm{DC}$ Inductive load: $1 \mathrm{HP} / 240 \mathrm{~V}, 1 / 2 \mathrm{HP} / 120 \mathrm{~V}$
Inrush current:	$30 \mathrm{~A} /<3 \mathrm{~s}$
Min. breaking capacity DC:	500 mW
Output indication:	red LED
Mechanical life:	3×10^{7}
Electrical life resistive load:	0.7×10^{5}
Control	
Power the control input:	0.8-530 mVA
Load between S-A2:	Yes
Control. terminals:	A1-S
Impulse length:	min. 25 ms / max. unlimited
Reset time:	150 ms
Other information	
Operating temperature:	$-4^{\circ} \mathrm{F}$ to $131{ }^{\circ} \mathrm{F}\left(-20^{\circ} \mathrm{C}\right.$ to $\left.55^{\circ} \mathrm{C}\right)$
Storage temperature:	$-22^{\circ} \mathrm{F}$ to $158{ }^{\circ} \mathrm{F}\left(-30^{\circ} \mathrm{C}\right.$ to $\left.70^{\circ} \mathrm{C}\right)$
Electrical strength:	4 kV (supply - output)
Operating position:	any
Mounting:	DIN rail EN 60715
Protection degree:	IP 40 from front panel / IP 20 terminals
Sensor cable length:	max. 50 m (standard wire)
Overvoltage category:	III.
Pollution degree:	2
Max. cable size (mm^{2}):	solid wire max. 1×2.5 or 2×1.5, with sleeve max. 1×2.5 (AWG 12) (0.4 Nm)
Dimensions of the sensor SKS:	see page 85
Weight of sensor SKS:	0.7 oz . (20 g)
Dimensions:	$3.5^{\prime \prime} \times 0.7^{\prime \prime} \times 2.5$ " $(90 \times 17.6 \times 64 \mathrm{~mm})$
Weight:	2.6 oz. (75 g)
Standards:	EN 60255-6, EN 61010-1

Symbol

Description of DIP switch

DIP 2-TEST

Connection

Function

Description

Twilight light switch SOU-3

Device is standardly supplied with jumper L-15 (3-wire connection).

For the correct function of device is neccesary sensor-side down device mounting.

- Is used as control of the device on the basis of ambient light intensity
- External version in IP65, box for mounting on the wall, front cover removable without screws
- Built in high resolution light sensor
- Two devices in one, function is set by jumper:
- twilight switch - contact closes by decreasing of ambient light intensity, and opens by its increasing
- light switch - contact closes by increasing ambient light intensity, and opens by decreasing light intensity. Used for switching of devices by reaching of pre-set ambient light level, usually sun shine (pulling down the shutters or blinds, activation of solar panels)
adjustable (by jumper) ranges of light level
3 adjustable levels of time delay (for elimination of short-term fluctuations of light intensity - for short increases in light intensity)
- Supply voltage 120 V AC

Description (proportion is accordant to real size)

Function

Connection

Memory \& latching relays MR-41, MR-42

- Latching relays, controlled by buttons from several locations can replace three way switches or cross bar switches thanks to control by buttons (unlimited number, connected in parallel by 2 wires), installation gets more transparent and faster for mounting
- Relays MR-41/UNI, MR-42/UNI memorize its last state even after supply failure. During the failure relay will turn off and after re-energizing will automatically turns on

MR-42

- options - $2 x$ parallel contacts or the other relay is latching
- function selected via external jumper between B1-B2
- Supply voltage AC/DC 12-240 V
-1-MODULE version, DIN rail mounting, controlling by buttons
MR-42/UNI: 8595188115919

Operating position:	any
Mounting:	DIN rail EN 60715
Protection degree:	IP 40 from front panel / IP 20 terminals
Overvoltage category:	III.
Pollution degree:	2
Max. cable size (mm^{2}):	solid wire max. 1×2.5 or 2×1.5 / with sleeve max. 1×2.5 (AWG 12) (0.4 Nm)
Dimensions:	$3.5{ }^{\prime \prime} \times 0.7^{\prime \prime} \times 2.5$ " $90 \times 17.6 \times 64 \mathrm{~mm}$)
Weight:	$2.2 \mathrm{oz} .(62 \mathrm{~g}) \quad 3.1 \mathrm{oz} .(89 \mathrm{~g})$
Standards:	EN 61810-1, EN 61010-1

Function

MR-42

Monitoring relays

(18) Power factor

COS-1
Monitors and scores power factor (phase shift between current and voltage $\cos \varphi$) in 3phase / 1phase circuits (motors, pumps etc.).

Monitoring relays

Accessories

SHR
Level sensors
SHR-1 (M, N) - for monitoring flooding
SHR-2- for level detection
SHR-3 - for demanding and industrial environment

Overview table

Relays monitor voltage

Type	$\stackrel{\text { ⿹ㅡㅁ }}{0}$	$\begin{aligned} & \text { 茉 } \\ & \frac{\mathbf{N}}{9} \end{aligned}$	Secure variables							Setting			Description	
			そ	¢	$\stackrel{\rightharpoonup}{\wedge}$	$\stackrel{\rightharpoonup}{v}$	彦			$\frac{त}{\square}$				
HRN－33	1－M	from monitored	1	AC 48－276V	－	－	X	X	X	－	X	X	For all types，the delay is adjustable from $0-10$ seconds（to eliminate short－term outages or peaks）． The lower voltage level（Umin）is set in \％of the upper level （Umax）．	46
HRN－34	1－M	from monitored	1	DC6－30V	－	－	X	X	X	－	X	X		
HRN－35	1－M	from monitored	1	AC 48－276V	－	－	X	X	X	－	X	X		
HRN－37	1－M	from monitored	1	AC $24-150 \mathrm{~V}$	－	－	X	X	X	－	X	X		
HRN－63	1－M	from monitored	1	AC 48－276V	\bullet	\bullet	X	X	X	－	X	X		
HRN－64	1－M	from monitored	1	DC6－30V	－	－	X	X	X	－	X	X		
HRN－67	1－M	from monitored	1	AC $24-150 \mathrm{~V}$	－	－	X	X	X	－	X	X		
HRN－43／120V	3－M	AC 120V	3	AC $3 \times 84-480 \mathrm{~V}$	－	\bullet	\bullet	\bullet	－	－	\bullet	\bullet	2 output relays，functions of the second relay may be selected （independent／parallel）． Galvanically separated power supply．	48
HRN－43N／120V	3－M	AC－120V	3	AC $3 \times 48-276 \mathrm{~V}$	－	－	\bullet	－	\bullet	－	－	－		
$\begin{aligned} & \text { HRN-41/120V } \\ & \text { HRN-41/24V } \end{aligned}$	3－M	$\begin{gathered} \text { AC 120V } \\ \text { AC/DC } 24 \mathrm{~V} \end{gathered}$	1	AC／DC 50 V AC／DC 160 V AC／DC 500 V	－	－	X	X	X	－	\bullet	－	Second relay function（independent／parallel）． Galvanically separated power supply from measuring inputs．	50
$\begin{aligned} & \text { HRN-42/120V } \\ & \text { HRN-42/24V } \end{aligned}$	3－M	$\begin{aligned} & \text { AC 120V } \\ & \text { AC/DC } 24 \mathrm{~V} \end{aligned}$	1	AC／DC 50 V AC／DC 160 V AC／DC500 V	－	－	X	X	X	－	－	－		
$\begin{aligned} & \text { HRN-56/120 } \\ & \text { HRN-56/208 } \\ & \text { HRN-56/240 } \end{aligned}$	1－M	from monitored	3	$\begin{aligned} & A C 3 \times 72-160 \mathrm{~V} \\ & A C 3 \times 125-276 \mathrm{~V} \\ & A C 3 \times 144-276 \mathrm{~V} \end{aligned}$	X	－	－	－	X	－	X	X	Thanks to the power supply from all three phases，the relay is operational even if one phase fails．	51

Relay for factor $\cos -\varphi$ monitoring

Type	$\begin{aligned} & \text { 든 } \\ & 0 \end{aligned}$		Secure variables				Setting			Description	
			$\begin{aligned} & \text { ॐ } \\ & \text { ベㄹ } \end{aligned}$		$\xrightarrow{\text { ¢ }}$	vi	$\frac{\stackrel{\rightharpoonup}{\circ}}{\stackrel{\circ}{\circ}}$	䓂	$\begin{aligned} & \text { 즈N } \\ & \stackrel{y}{0} \text { n } \\ & \text { Nib } \end{aligned}$		
COS－1／120V	3－M	AC110V	3	0．1－0．99	－	－	－	\bullet	－	Two output relays，one independent relay for each level． Galvanically separated power supply．	52

Relay for current monitor

Type	$\stackrel{\bar{G}}{\overline{1}}$	$\begin{aligned} & \text { 訔 } \\ & \text { IO } \\ & \text { 츨 } \\ & \text { ज } \end{aligned}$	Secure variables				Setting					Description	
					$\bar{\wedge}$	$\overline{\mathrm{V}}$	$\frac{\text { तo }}{\square}$			$\bar{\wedge}$	$\overline{\mathrm{v}}$		
PRI－32	1－M	$\begin{aligned} & \text { AC } 24-240 \\ & \text { V DC } 24 \mathrm{~V} \end{aligned}$	1	AC 1－20 A	－	X	X	X	X	－	X	Exceeding the current value－the current flowing through the monitored conductor must not exceed 100 A even on a short－ term basis．	53
PRI－51／0．5 PRI－51／1 PRI－51／2 PRI－51／5 PRI－51／8 PRI－51／16	1－M	$\begin{aligned} & \text { AC 24-240 } \\ & \text { VDC } 24 \mathrm{~V} \end{aligned}$	1	$\begin{gathered} A C 0.05-0.5 \mathrm{~A} \\ \mathrm{AC} 0.1-1 \mathrm{~A} \\ \mathrm{AC} 0.2-2 \mathrm{~A} \\ \mathrm{AC} 0.5-5 \mathrm{~A} \\ \mathrm{AC} 0.8-8 \mathrm{~A} \\ \mathrm{AC} 1.6-16 \mathrm{~A} \end{gathered}$	－	x	－	X	X	－	X	May be used for scanning the current from the current transformer－up to 600A． Power supply is galvanically separated from the measured current．	54
$\begin{aligned} & \text { PRI-53/1 } \\ & \text { PRI-53/5 } \end{aligned}$	6－M	$\begin{gathered} A C / D C \\ 24-240 \mathrm{~V} \end{gathered}$	3	$\begin{gathered} A C 3 \times 0.4-1.2 \mathrm{~A} \\ \mathrm{AC} 3 \times 2-6 \mathrm{~A} \end{gathered}$	\bullet	－	－	X	X	－	－	Monitors the drop in the strength of current below the preset value．Monitors exceeding the preset value．	55
$\begin{aligned} & \text { PRI-41/110V } \\ & \text { PRI-41/24V } \end{aligned}$	3－M	$\begin{gathered} A C 120 \mathrm{~V} \\ \mathrm{AC} / \mathrm{DC} \\ 24 \mathrm{~V} \end{gathered}$	1	AC／DC 1.6 A AC／DC5 A AC／DC 16 A	\bullet	－	－	－	\bullet	－	－	The adjustable delay for elimination of short－term outages and peaks for every level． Galvanically separated power supply．	56
$\begin{aligned} & \text { PRI-42/110V } \\ & \text { PRI-42/24V } \end{aligned}$	3－M	AC 120 V AC／DC 24 V	1	AC／DC 1.6 A AC／DC5 A AC／DC 16 A	\bullet	\bullet	－	－	\bullet	－	－	The adjustable delay for elimination of short－term outages and peaks for every level． Galvanically separated power supply．	

Level switches

Type	⿹ㅡㅁ		Secure variables		Setting			Description	
			き	旁 立	$\frac{\text { त }}{\text { ® }}$	高	気		
HRH－5	1－M	$\begin{gathered} A C / D C \\ 24-240 \mathrm{~V} \end{gathered}$	\bullet	－	－	－	\bigcirc	Measuring the frequency of 10 Hz will protect liquid from polarisation and measuring probes from increased oxidation． Galv．separated power supply．	57
$\begin{aligned} & \text { HRH-1/120V } \\ & \text { HRH-1/24V } \end{aligned}$	3－M	$\begin{gathered} A C 110 \mathrm{~V} \\ \mathrm{AC} / D \mathrm{C} 24 \mathrm{~V} \end{gathered}$	\bullet	\bullet	－	\bullet	－	Sensitivity adjustable by potentiometer． Galvanically separated power supply．	58
HRH－7	$\begin{aligned} & \hline \text { box } \\ & \text { IP65 } \end{aligned}$	$\begin{gathered} A C / D C \\ 24-240 \mathrm{~V} \end{gathered}$	\bullet	\bullet	\bullet	\bullet	\bullet	Suitable to work in harsh conditions due to the high degree of protection IP65．	60

Monitoring voltage relay range HRN-3x and HRN-6x

EAN code
HRN-33: 8595188115636
HRN-34: 8595188115643
HRN-35: 8595188115650
HRN-37: 8595188130615
HRN-63: 8595188130622 HRN-64: 8595188130639 HRN-67: 8595188130646

Technical parameters	HRN-33 / HRN-63	HRN-34 / HRN-64	HRN-35	HRN-37 / HRN-67
Supply and measuring				
Terminals:	A1-A2	A1-A2	A1-A2	A1-A2
Voltage range:	AC $48-276 \mathrm{~V} / 50-60 \mathrm{~Hz}$	DC6-30V	AC $48-276 \mathrm{~V} / 50-60 \mathrm{~Hz}$	AC $24-150 \mathrm{~V} / 50-60 \mathrm{~Hz}$
Burden:	AC max. 1.2 VA	DC max. 1.2 VA	ACmax. 1.2 VA	AC max. 1.2 VA
Upper level (Umax):	AC 160-276 V	DC $18-30 \mathrm{~V}$	AC 160-276V	AC $80-150 \mathrm{~V}$
Bottom level (Umin):	30-95\% Umax	35-95\% Umax	30-95\% Umax	30-95\% Umax
Max. permanent:	AC 276 V	DC36V	AC 276 V	AC 276 V
Peak overload < 1ms:	AC290 V	DC50 V	AC 290 V	AC 290 V
Time delay:	adjustable 0-10s			
Accuracy				
Setting accuracy (mechanical):	5%			
Repeat accuracy:	<1\%			
Dependance on temperature:	$<0.1 \% /{ }^{\circ}\left({ }^{\circ} \mathrm{C}\right)$			
Tolerance of limit values:	5\%			
Hysteresis (from fault to normal):	2-6\% of adjusted value (only HRN-33, HRN-34, HRN-35, HRN-37)			
Output - Number of contacts:	1x changeover / SPDT (AgNi / Silver Alloy)	1x changeove r/SPDT (AgNi / Silver Alloy)	$2 x$ chang. for each level of voltage,(AgNi)	1x changeover / SPDT (AgNi / Silver Alloy)
Current rating:	Resistive load: Inductive load:	Resistive load: $\quad 15 \mathrm{~A} / 240 \mathrm{~V} \mathrm{AC} / 24 \mathrm{VDC}$		
Inrush current:	$30 \mathrm{~A} /<3 \mathrm{~s}$			
Min. breaking capacity DC:	500 mW			
Output indication:	red / green LED			
Mechanical life:	3×10^{7}			
Electrical life (AC1):	0.7×10^{5}			
Other information				
Operating temperature:	$-4^{\circ} \mathrm{F}$ to $131{ }^{\circ} \mathrm{F}\left(-20^{\circ} \mathrm{C}\right.$ to $\left.55^{\circ} \mathrm{C}\right)$			
Storage temperature:	$-22^{\circ} \mathrm{F}$ to $158{ }^{\circ} \mathrm{F}\left(-30^{\circ} \mathrm{C}\right.$ to $\left.70^{\circ} \mathrm{C}\right)$			
Electrical strength:	4 kV (supply - output)			
Operating position:	any			
Mounting:	DIN rail EN 60715			
Protection degree:	IP 40 from front panel			
Overvoltage cathegory:	III.			
Pollution degree:	2			
Max. cable size (mm^{2}):	solid wire max. 1×2.5 or 2×1.5, with sleeve max. 1×2.5 (AWG 12$)(0.4 \mathrm{Nm}$)			
Dimensions:	$3.5^{\prime \prime} \times 0.7^{\prime \prime} \times 2.5^{\prime \prime}(90 \times 17.6 \times 64 \mathrm{~mm})$			
Weight:	2.2 oz. (61 g)	2.6 oz. (73 g)	$3 \mathrm{oz} .(85 \mathrm{~g})$	2.2 oz. (61 g)
Standards:	UL E308660; EN 60255-6, EN 61010-1			

- It serves to control supply voltage for appliances sensitive to supply tolerance, protection of the device against under/over voltage
- HRN-3x is band voltage relay, HRN-6x is over/under voltage relay. For difference - see graph of function
- HRN-33, HRN-63 - monitors voltage in range AC 48-276V
- Umax and Umin can be monitored independently
- HRN-34, HRN-64 - like HRN-33, but voltage range is DC 6-30 V
- monitoring of battery circuits $(12,24 \mathrm{~V})$
- HRN-35 - like HRN-33, but independent output relays for each voltage level
- switching of other loads possible
- HRN-37, HRN-67 - like HRN-33, monitors voltage in range AC $24-150 \mathrm{~V}$
- it is possible to monitor level of overvoltage and undervoltage independently
- Adjustable time delay for all types is $0-10 \mathrm{~s}$ (to eliminate short voltage drops or peaks)
- Voltage Umin adjusted as \% of Umax
- 3-state indication - LEDs indicating normal state and 2 fault states
- Supply from monitored voltage (monitors level of its own supply)
- 1-MODULE, DIN rail mounting

Symbol

HRN-33, HRN-37
HRN-63, HRN-67

HRN-34,
HRN-64

HRN-35

Indication LED

HRN-33, HRN-37

Red LED =0FF \begin{tabular}{l}

Normal state
Umin $<U n<U \max$
Green LED $=0 \mathrm{~N}$

Red
\end{tabular}

HRN-34

HRN-63, HRN-67

	Normal state $U \min <U n<U \max$ Green LED $=0 \mathrm{~N}$ Red LED $=0$ FF		Exceeded Umax (overvoltage)		Drop below Umin (undervoltage) Un<Umin Green LED $=0$ FF Red LED $=0 \mathrm{~N}$
		U	Un>Umax	\geq - $u \geqslant$	
			Green LED $=0 \mathrm{~N}$		
			Red LED $=0 \mathrm{~N}$		

Description

HRN-64

Function HRN-33, 34, 35, 37 (band voltage relay)

HRN-33,HRN-37

HRN-34

HRN-35

Legend:
Umax - upper adjustable level of voltage Un - measured voltage
Umin - bottom adjustable level of voltage
15-18 - switching contact of output relay No. 1
25-28 - switching contact of output relay №. 2
LED \geq Un - green indicator light
LED U \gtrless - red indicator light

Monitoring relay series HRN-3x monitors level of voltage in single - phase circuits. Monitored voltage serves also as supply voltage. It is possible to set two indipendent (all occurrences) levels of voltage, when exceeded the output is activated. HRN-33 and HRN-34 - in normal state the output relay is permanently switched. It switches off when there is a limit settings. This combination of linkage of the output relay is advantageous when the full failure of supply (monitored) voltage is considered to be a faulty state in the same way as a decrease of voltage within the set level. Output relay is in both situations always switched off.
Differently HRN- 35 version uses indipendent relay for each level, in normal state it is switched off. If the upper level is exceeded (for example overvoltage) 1 relay switches on, when the bottom level (e.g. undervoltage) is exceeded 2 relay switches. It is thus possible to see the particular faulty state. To eliminate short peaks in the main the time delay, which is possible to be set in range $0-10 \mathrm{~s}$, is used. It functions when changing from normal to faulty state and prevents unavailing pulsation of the output relay caused by parasitive peaks. Time delay doesn't apply when changing from faulty to normal state, but hysteresis ($1-6 \%$ depends on the voltage setting) apply. Thanks to changeover contacts it is possible to get other configurations and functions according to actual requirements of the application.

Function HRN-63, 64, 67 (over / under voltage relay)

Legend:
Umax - upper adjustable level of voltage Un-measured voltage Umin - bottom adjustable level of voltage 15-18- switching contact of output relay LED U> - red indicator light

Monitoring relay line HRN-6x serves to monitor levels of voltage in single-phase or DC circuits. Monitored voltage is in the same time also supply voltage. It is possible to set two indipendent levels of voltage. When Umax is exceeded, output is activated. In case voltage level falls below Umin, output is deactivated. This combination is advantageous when full absence of supply voltage is understood as faulty state, as well as voltage drop within the set level. To eliminate short voltage peaks in the main there is time delay which can be set in a range of $0-10$ sec. Such delay applies in case of going from overvoltage to undervoltage. In case of returning from undervoltage to overvoltage this delay doesn't apply. Thanks to changeover output contacts it is possible to reach various configurations and functions according to requirements or an application.

Relay for complete monitoring 3-phase mains HRN-43, HRN-43N

- Monitoring 3-phase mains:
- voltage in 2 levels (undervoltage and overvoltage) in range $138-276 \mathrm{~V}$ or $280-480 \mathrm{~V}$ ($3 \times 400 \mathrm{~V}$) - phase asymmetry
- phase sequence
- phase failure
- Function "MEMORY" - for return from the faulty into normal state press button „RESET" located on the front panel
- HRN-43 - for circuits $3 \times 400 \mathrm{~V}$ (without neutral)
- HRN-43N - for circuits $3 \times 400 / 120 \mathrm{~V}$ (with neutral)
- 2 output relays, selectable function of 2nd relay (independent / parallel)
- Fixed (t 1) and adjustable (t2) delay to eliminate short voltage drops and peaks
- Galvanically separated supply voltage AC 120 V
- 3-MODULE, DIN rail mounting

Symbol

HRN-43

Connection

HRN-43N
HRN-43

Function

Overvoltage - undervoltage

Legend:
L1, L2, L3-3-phase voltage
RESET - press of the button on frontal panel
t1 - time delay, fixed
t2- time delay, adjustable $0-10$ sec
15-18 output relay 1
$25-28$ output relay 2
LED $\gtrless U$ - indication overvoltage / undervoltage

Selection of $2^{\text {nd }}$ the relay function:
In order to monitor 2 levels of voltage, it is possible to select if output relay will respond to each level individually (see the diagram) or both relays will switch in parallel way (see diagram "phase sequence"). Selection via DIP switch.

Legend:

L1, L2, L3-3-phase voltage
RESET - press of the button on frontal panel
t1 - time delay, fixed
t2-time delay, adjustable $0-10$ sec
15-18 output relay 1
$25-28$ output relay 2
LED Δ indication of phase sequence

Selection of $2^{\text {nd }}$ relay function:
The function is not implied in the monitoring phase sequence, the relays are switched in parallel way.
DIP switch no. 3 is ignored.

Legend:

L1, L2, L3-3-phase voltage
RESET - press of the button on frontal panel
t1 - time pause, fixed
t2 - time pause, adjustable $0-10$ sec
人- adjustable asymmetry 5-20\%
15-18 output contact of relay 1
25-28 output contact of relay 2
LED $\boldsymbol{\lambda}$ - asymmetry indicator

Selection of $2^{\text {nd }}$ relay function:
The function is not implied in the monitoring phase sequence, the relays are switched in parallel way.
DIP switch no. 3 is ignored.

Function description

Relay is designated to monitor 3-phase circuits. Type HRN-43N controls voltage towards neutral wire, type HRN-43 controls interphase voltage. Relay can monitor voltage in two levels (overvoltage/ undervoltage), phase assymetry, sequence and failure. Each faulty state is indicated by individual LED. By DIP switch ($N o .3$) it is possible to define function of the other relay - independent function (1 x for overvoltage, 1 x for undervoltage) or in parallel. Time delays $t 1$ (fixed) - when changing from faulty to normal state or when de-energized and t 2 (adjustable) when changing from normal to faulty state. These delays prevent incorrect conduct and oscillation of output device during short voltage peaks in the main or during gradual voltage decline into normal.
Voltage control
Set upper level Umax in range 138-276V (or 240-480V for HRN-43) and lower level Umin in range 35-99\% Umax. In case any phase passes this range, after a delay which eliminated short voltage peaks, contact opens. Output contact again switches after returning back into monitored voltage range and exceeding fixed hysteresis (which is adjustable in two values by DIP switch).
Phase sequence
Monitors correctness of phase sequence. In case of unwanted change output contact breaks. In case of energization of a device with incorrect phase sequence, contact stays opened.
Asymmetry
Rate of assymetry between individual phases is set in a range of $5-20 \%$. In case set asymmetry is exceeded, output relay breaks and LED indicating asymmetry shines. Delays $\mathrm{t} 1, \mathrm{t} 2$ and hysteretic are applicable when returning to normal state.

Monitoring voltage relay HRN-41, HRN-42

- Monitoring DC / AC 1-phase in 3 ranges

- Monitoring voltage with 2 independent levels (overvoltage / undervoltage)
- Two versions, HRN-41: Function "HYSTERESIS" a HRN-42: Function "WINDOW"
- "MEMORY" function - manual reset key on frontal panel
- Function of second relay (independent / parallel)
- Adjustable delay for short peaks
- Galvanically separated supply voltage from measuring inputs
-3-MODULE, DIN rail mounting

Function

Relay is delivered in two versions - according to the way of setting and monitoring voltage levels.
HRN-41 has function Hysteresiss, which means that only upper level is set (Umax) and lower level (Umin) is set in \% from upper level. Therefore lower level automatically changes when changing upper level.

HRN-42 has function "WINDOW", which means that upper level (Umax) and lower level (Umin) are set independently in \% from rated monitores range.
Both types have choice of function MEMORY, in case the relay gets into a faulty state it keeps output in this state until it is reset by button RESET. DIP switch No. 3 can be used to choose if relays should switch individually for each level or in parallel in case any level of voltage is overrun. DIP switch No. 4 serves to set hysteresis which applies when going from normal state to a faulty one.
Relay has protection against polarity reversing for DC voltage or incorrectly chosen AC-DC voltage (this fault is indicated by flashing of both LEDs (LED < U a LED > U).

Relay for monitoring phase sequence and failure HRN-56

- Relay monitors phase sequence and failure (e.g. control of correct motor winding etc.)
- Relay is designated for monitoring of 3-phase networks
- Supply from all phases which means that relay is functional also in case of one phase failure
- Supply and monitored supply Un:

HRN-56/120-3 x 120V
HRN-56/208-3 x 208V
HRN-56/240-3x240V

- Fixed time delay T1 (500 ms) and adjustable time delay T2 ($0-10 \mathrm{~s}$)
- Faulty state is indicated by LED and by opening of output relay contact
-1-MODULE, DIN rail mounting

Technical parameters	HRN-56		
	120	208	240
Monitoring terminals:	L1, L2, L3		
Supply terminals:	L1, L2, L3		
Supply / measured voltage:	$3 \times 120 \mathrm{~V} / 60 \mathrm{~Hz}$	$3 \times 208 \mathrm{~V} / 50-60 \mathrm{~Hz}$	$3 \times 240 \mathrm{~V} / 50-60 \mathrm{~Hz}$
Level Umin:	adjustable 70-95\% Un		
Level Uoff:	60% Un		
Burden:	max. 2 VA		
Hysteresis:	2\%		
Max. permanent overload:	AC $3 \times 160 \mathrm{~V}$	AC $3 \times 276 \mathrm{~V}$	
Peak overload < 1s:	AC $3 \times 180 \mathrm{~V}$	AC $3 \times 300 \mathrm{~V}$	
Time delay T1:	max. 500 ms		
Time delay T2:	adjustable 0-10 s		
Output			
Number of contacts:	1x changeover / SPDT (AgNi / Silver Alloy)		
Current rating:	Resistive load: $\quad 8 \mathrm{~A} / 240 \mathrm{VAC} / 24 \mathrm{VDC}$		
	Inductive load:	V, $1 / 4 \mathrm{HP} / 120 \mathrm{~V}$	$1 \mathrm{HP} / 240 \mathrm{~V}, 1 / 2 \mathrm{HP} / 120 \mathrm{~V}$
Inrush current:	10 A		
Indication of state:	red LED		
Mechanical life:	1×10^{7}		
Electrical life resistive load:	1×10^{5}		
Other information			
Operating temperature:	$-4^{\circ} \mathrm{F}$ to $131{ }^{\circ} \mathrm{F}\left(-20^{\circ} \mathrm{C}\right.$ to $\left.55^{\circ} \mathrm{C}\right)$		
Storage temperature:	$-22^{\circ} \mathrm{F}$ to $158{ }^{\circ} \mathrm{F}\left(-30^{\circ} \mathrm{C}\right.$ to $\left.70^{\circ} \mathrm{C}\right)$		
Electrical strength:	4 kV (supply - output)		
Operating position:	any		
Mounting:	DIN rail EN 60715		
Protection degree:	IP 40 from front panel / IP 10 terminals		
Overvoltage category:	III.		
Pollution degree:	2		
Max. cable size (mm^{2}):	solid wire max. 2×2.5 or 1×4,with sleeve max. 1×2.5 or 2×1.5 (AWG 12) (0.4 Nm)		
Dimensions:	$3.5^{\prime \prime} \times 0.7^{\prime \prime} \times 2.5^{\prime \prime}(90 \times 17.6 \times 64 \mathrm{~mm})$		
Weight:	2.3 oz. (66 g)		
Standards:	UL E308660; EN 60255-6, EN 61010-1		

Relay in 3-phase main monitors correct phase sequence and phase failure. Green LED illuminates permanently and indicates energization. In case of phase failure red LED flashes and relay turns off. When changing to faulty state, time delay applies - delay setting is done by potentiometer on the front panel of the device. In case of incorrect phase sequence, red LED shines permanently and relay is open. In case supply voltage falls below $60 \% \mathrm{Un}$ (Uoff lower level) relay immediately opens with no delay and faulty state is indicate by red LED. HRN-56: Thanks to supply from all phases, relay is functional also in case of one phase failure.

Symbol

Function

Power factor monitoring relay COS-1

EAN code
COS-1/120V: 8595188147163

Time delay t1:	adjustable $0.5-30 \mathrm{~s}$
Time delay t2:	adjustable $0-10 \mathrm{~s}$

Accuracy

Accuracy setting (mechanical):	5%
Accuracy of repetition:	$<1 \%$
Temperature dependance:	$<0.1 \% /{ }^{\circ} \mathrm{F}\left({ }^{\circ} \mathrm{C}\right)$
Limit values tolerance:	5%

Output

Number of contacts:	2 x changeover / SPDT (AgNi / Silver Alloy)
Current rating:	$\begin{array}{ll}\text { Resistive load: } & 15 \mathrm{~A} / 240 \mathrm{~V} \mathrm{AC} / 24 \mathrm{~V} \mathrm{DC} \\ \text { Inductive load: } & 1 \mathrm{HP} / 240 \mathrm{~V}, 1 / 2 \mathrm{HP} / 120 \mathrm{~V}\end{array}$
Inrush current:	$20 \mathrm{~A} /<3 \mathrm{~s}$
Min. breaking capacity $D C$:	500 mW
Output indication:	yellow LED
Mechanical life:	3×10^{7}
Electrical life resistive load:	0.7×10^{5}
Other information	
Operating temperature:	$-4^{\circ} \mathrm{F}$ to $131{ }^{\circ} \mathrm{F}\left(-20^{\circ} \mathrm{C}\right.$ to $\left.55^{\circ} \mathrm{C}\right)$
Storage temperature:	$-22^{\circ} \mathrm{F}$ to $158{ }^{\circ} \mathrm{F}\left(-30^{\circ} \mathrm{C}\right.$ to $\left.70^{\circ} \mathrm{C}\right)$
Electrical strength:	4 kV (supply - output)
Operating position:	any
Mounting:	DIN rail EN 60715
Protection degree:	IP 40 from front panel / IP 20 terminals
Overvoltage category:	III.
Pollution degree:	2
Max. cable size (mm^{2}):	$\begin{aligned} & \text { max. } 1 \times 2.5 \text {, max. } 2 \times 1.5 \text {, } \\ & \text { with sleeve max. } 1 \times 1.5 \text { (AWG } 12)(0.4 \mathrm{Nm}) \end{aligned}$
Dimensions:	3.5 " $\times 2$ " $\times 2.6$ " $(90 \times 52 \times 65 \mathrm{~mm}$)
Weight:	8 oz. (240 g)
Standards:	EN 60255-6, EN 61010-1

- Relay monitors phase shift between current and voltage $-\cos -\varphi$ in 3 -phase and also 1-phase main for monitoring overload / unloading of motors
- Supply set $3 \times 400 \mathrm{~V}$
- Function "MEMORY" - manual reset - button on front panel
- It is possible to connect current transformer in front of the device. This enables increase of current range
- 2 output relays, independent for each level
- Adjustable delay to eliminate short peak overloading
- Adjustable range and bottom level $\cos -\varphi$, of power factor between 0.1-0.99
- Adjustable delay to eliminate starting of motor
- Selectable hysteresis 5 or 10\%
- Galvanically separated supply voltage AC 120 V
- 3-MODULE, DIN rail mounting

Symbol

Connection

Function

After the device is switched on, the yellow LED flashes for time $t 1$ and both relays are switched (state OK). This delay serves to eliminate a faulty state e.g. motor start-up. If the upper limit is exceeded ($\cos \varphi$ - max) red LED shines > $\cos \varphi$. After a time delay t2 the output relay opens (15-18). Equally, if it falls under bottom limit ($\cos \varphi-\min$) red LED shines $<\cos \varphi$ and after a time delay t2 the output relay opens (25-28). In case the load is disconnected (no current), red LED shines $>\cos \varphi(\cos \varphi=1)$.

Current monitoring relay PRI-32

- Current transformer is a part of the product. Inside this transformer there is a wire which senses the volume of flowing current
- This construction reduces thermal stress of product when compared with conventional solutions with inbuilt shunt, and increases current range up to 20 Amps , and galvanically separates monitored circuit
- For heating bars in sliding rails, heating cables, indication of current flow, controlling of 1-phase motor consumption..
- Universal supply AC $24-240 \mathrm{~V}$ and DC 24 V
- Supply is galvanically separated from measuring current
- Current exceeding - current flowing through monitored wire must not exceed 100 A
- Clamp terminals
- 1-phase, 1-MODULE, DIN rail mounting

PRI-32: 8595188121965

Function

Monitoring relay PRI-32 serves to monitor current level in single phase AC circuits. Due to its fluent adjustment of release current, it is predestined for applications with necessity of current flow indication, and can be used as precedence relay. Output relay is off in normal state. In case the set current level is exceeded, it switches. Multivoltage supply is an advantage.

Current monitoring relay PRI-51

Example of an order

Always specify all reference name of current relay according to required range, for example PRI-51/5.

Function

Monitoring relay PRI-51 serves to monitor current level in one-phase AC circuits. Gradual setting of actuating current of monitoring relay enables many different applications. Output relay is in normal state opened. After the set current level is reached, relay closes after the set delay ($0.5-10 \mathrm{~s}$). When returning from faulty to normal state there is a hystersis (5%). Multivoltage of this relay is an advantage. It is possible to monitor load which doesn't have the same supply as monitoring relay PRI-51. Range of PRI-51 can be increased by an external current transformer.

Three-phase current monitoring relay PRI-53

EAN code
PRI-53/1: 8595188142137
PRI-53/5: 8595188142144

Technical parameters	PRI-53/1	PRI-53/5
Supply terminals:	A1, A2	
Current monitoring terminals 1st phase: 2nd phase: 3rd phase:		
Supply voltage:	24-240V AC/DC (AC $50-60 \mathrm{~Hz}$)	
Tolerance of voltage range:	$\pm 10 \%$	
Operating AC frequency:	$45-65 \mathrm{~Hz}$	
Burden: (max):	3VA / 1.2W	
Rated current In:	AC 1A	AC5A
Current level-I:	adjustable 40-120\% In	
Overload capacity - continuous: - max. 3 s :	$\begin{aligned} & 2 \mathrm{~A} \\ & 20 \mathrm{~A} \end{aligned}$	$\begin{aligned} & 10 \mathrm{~A} \\ & 50 \mathrm{~A} \end{aligned}$
Difference:	fix 1% In	
Delay (until failure):	adjustable 0.5-10s	
Output relay - contact:	2 x schangeover / SPDT (AgNi) gilded	
Current rating:	Resistive load: Inductive load:	$\begin{aligned} & \text { VDC } \\ & H P / 120 \mathrm{~V} \end{aligned}$
Mechanical life:	3×10^{6} at rated load	
Other information		
Operating temperature:	$-4^{\circ} \mathrm{F}$ to $131{ }^{\circ} \mathrm{F}\left(-20^{\circ} \mathrm{C}\right.$ to $\left.55^{\circ} \mathrm{C}\right)$	
Storing temperature:	$-22^{\circ} \mathrm{F}$ to $158{ }^{\circ} \mathrm{F}\left(-30^{\circ} \mathrm{C}\right.$ to $\left.70^{\circ} \mathrm{C}\right)$	
Electrical strengh (power supply - relay contact):	$4 \mathrm{kV} / 1 \mathrm{~min}$.	
Overvoltage category:	III.	
Pollution level:	2	
Protection degree:	IP 40 from font panel / IP 20 terminal	
Max. cable size (mm^{2}):	$\max 2 \times 1.5 / 1 \times 2.5$ (AWG 12) (0.4 Nm)	
Dimensions:	$3.5{ }^{\prime \prime} \times 4.1^{\prime \prime} \times 2.5^{\prime \prime}(90 \times 105 \times 64 \mathrm{~mm})$	
Weight:	7.3 oz. (208 g)	
Standards:	EN 60255-6, EN 60255-27, EN 61000-6-2, EN 61000-6-4	

- It is intended for monitoring the current in three-phase devices (e.g. cranes, motors, etc.)
- 24-240 V AC/DC power supply galvanically separated from the circuit of the monitored current
- Adjustable current level in \% of In
- Fixed difference level
- Adjustable delay level (when exceeding the preset limit)
- Adjustable function:
- UNDER - monitors the drop in the strength of current below the preset value I
- OVER - exceeding the preset value I
- 2 types depending on the strength of rated current $\ln (1 A, 5 A)$
- 6-MODULE, DIN rail mounting
- Output relay with 2 changeover contacts
- Option of connecting via the current transformers to increase the value of the monitored current by up to 600 A

Connection

Functions

After the supply voltage is connected the green LED is on.

UNDER function

If the strength of the monitored current in all phases exceeds the preset level I, the relay is triggered and the red LED is off. If the strength of the monitored current drops in any phase below the level I, the relay is disconnected after the preset delay timing elapses and the red LED goes on. The red LED flashes during the delay.
If the strength of the monitored current returns above the level I + difference, the relay is triggered without delay and the red LED goes off.

OVER function:
If the strength of the monitored current is lower in all phases than the preset level I , the relay is disconnected and the red LED is off.
If the strength of the monitored current exceeds in any phase the level I, the relay is triggered after the preset delay timing elapses and the red LED goes on. The red LED flashes during the delay.
If the strength of the monitored current again drops below the level I - difference, the relay is disconnected without delay and the red LED goes off.

Current monitoring relay PRI-41, PRI-42

- To monitor overloading / discharge (machine, motor...), load sensing, diagnostics of remote device (interruption, short circuit, current cunsumption increase...)
- Monitors AC/DC 1-phase current in 3 ranges
- Monitoring adjusted current in 2 independent levels
- PRI-41: "HYSTERESIS" function and PRI-42: "WINDOW" function
- Function of 2nd relay (independent / parallel):
"MEMORY" function - manual reset
"RESET" button on the frontal panel
- Adjustable time delay for each level
- Galvanically separated supply
- 3-MODULE, DIN rail mounting

Technical parameters	PRI-41		PRI-42
Supply circuit			
Supply terminals:	A1-A2		
Voltage range:	AC 120 V or AC / DC 24 V ($\mathrm{AC} 50-60 \mathrm{~Hz}$)		
Burden:	max. 4.5 VA		
Operating range:	-15\%; +10\%		
Measuring circuit			
Ranges:	4-16 A (AC 60Hz)	1.25-5 A (AC 60Hz)	0.4-1.6 A (AC 60Hz)
Terminals:	C-B1	C-B2	C-B3
Input resistance:	$5 \mathrm{~m} \Omega$	$11 \mathrm{~m} \Omega$	$50 \mathrm{~m} \Omega$
Max. permanent current:	16 A	5 A	1.6 A
Inrush overload <1ms:	20 A	6.3 A	2 A
Time delay for Imax:	adjustable 0-10 sec		
Time delay for Imin:	adjustable 0-10 sec		
Accuracy			

Description

Symbol

Connection

Function

Relay is delivered in two versions - according to setting and level monitoring.
PRI-41 has function hysteresis, which means that you set only upper level (Imax) and lower level is set in \% from upper level. Therefore when upper level is changed, lower level changes automatically.
PRI-42 has function "WINDOW", which means that you set upper level (Imax) and lower level (Imin) individually in \% of rated monitored range.
Both types have selectable function MEMORY. In case the relay gets to faulty state, this function leaves relay in this state until it is reseted by RESET button. DIP switch No. 3 can be used to choose if output relay should switch for each level separatelly, or in parallel in case any current level is exceeded. DIP switch №. 4 serves to set hysteresis which applies when changing from faulty to normal state. Relay is protected against re-poling of $D C$ current, or wrong $A C / D C$ current (this fault is indicated by LED < I a LED > I common flashing).

HRH-5: 8595188136396

Technical parameters	HRH-5
Functions:	2
Supply terminals:	A1-A2
Voltage range:	24... $240 \mathrm{~V} \mathrm{AC/} \mathrm{DC} \mathrm{(} \mathrm{AC} 50-60 \mathrm{~Hz}$)
Input:	max. 2 VA
Toleration of voltage range:	-15\%; +10\%
Measuring circuit	
Sensitivity (input resistance):	adjustable in range $5 \mathrm{k} \Omega-100 \mathrm{k} \Omega$
Voltagen electrodes:	max. AC3.5 V
Current in probes:	$\mathrm{AC}<0.1 \mathrm{~mA}$
Time response:	max. 400 ms
Max. capacity of probe cable:	800 nF (sensitivity 5k 2), 100 nF (sensitivity $100 \mathrm{k} \Omega$)
Time delay (t):	adjustable, $0.5-10 \mathrm{sec}$
Time delay after switching on (t 1):	1.5 sec
Accuracy	
Accuracy in setting (mechanical):	$\pm 5 \%$
Output	
Number of contacts:	1x changeover / SPDT (AgNi / Silver Alloy)
Current rating:	Resistive load: $8 \mathrm{~A} / 240 \mathrm{~V} \mathrm{AC} / 24 \mathrm{~V} \mathrm{DC}$ Inductive load: $1 / 2 \mathrm{HP} / 240 \mathrm{~V}, 1 / 4 \mathrm{HP} / 120 \mathrm{~V}$
Min. switched output DC:	500 mW
Mechanical life resistive load:	1×10^{7}
Electrical life:	1×10^{5}
Other information	
Operational temperature:	$-4^{\circ} \mathrm{F}$ to $131{ }^{\circ} \mathrm{F}\left(-20^{\circ} \mathrm{C}\right.$ to $\left.55^{\circ} \mathrm{C}\right)$
Storing temperature:	$-22^{\circ} \mathrm{F}$ to $158{ }^{\circ} \mathrm{F}\left(-30^{\circ} \mathrm{C}\right.$ to $\left.70^{\circ} \mathrm{C}\right)$
Electrical strenght:	3.75 kV (supply - sensors)
Operational position:	any
Mounting:	DIN rail EN 60715
Protection degree:	IP 40 from font panel / IP 10 terminals
Overvltage category:	II.
Pollution degree:	2
Profile of connecting wires (mm^{2}):	$\max .2 \times 2.5$, max. 1×4, with sleeve max. $1 \times 2.5, \max .2 \times 1.5$ (AWG 12$)(0.4 \mathrm{Nm})$
Dimensions:	$3.5{ }^{\prime \prime} \times 0.7^{\prime \prime} \times 2.5{ }^{\prime \prime}(90 \times 17.6 \times 64 \mathrm{~mm})$
Weight:	2.5 oz. (72 g)
Standards:	EN 60255-6, EN 61010-1
Recommended measuring probes:	seepg. 62

Symbol

 another level)

- Relay is designed for monitoring levels in wells, basins, reservoirs, tanks...
- In one device you can choose the following configurations:
- one-level switch of conductive liquids (by connecting H and D)
- two-level switch of conductive liquids
- One-state device monitors one level, two-state device monitors two levels (switches on one level and switches off on
- Choice of function PUMP UP, PUMP DOWN
- Adjustable time delay on the output (0.5-10s)
- Sensitivity adjustable by a potentiometer ($5-100 \mathrm{k} \Omega$)
- Measuring frequency 10 Hz prevents polarization of liquid and raising oxidation of measuring probes
- Galvanically separated supply voltage UNI 24.. 240 VAC/DC
- 1-MODULE, mounting onto DIN rail

Device description

Connection

Function

Relay is designated for monitoring of levels of conductive liquids with possibility of functions: PUMP UP or PUMP DOWN. To prevent polarization and liquid electrolysis of liquid, and undesirable oxidation of measuring probes, alternating current is used. For measuring use three measuring probes: H - upper level, D - lower level, C - common probe. In case you use a tank made of a conductive material, you can use it as probe C. In case you require monitoring of one level only, it is neccessary to connect inputs H and D and connect them to one probe - in this case sensitivity is lowered by half ($2.5 \ldots . .50 \mathrm{k} \Omega$). Probe C can be connected with a protective wire of supply system (PE). To prevent undesirable switching out output contacts by various influences (sediment on probes, humidity...) it is possible to set sensitivity of the device according to conductivity of monitored liguid (corresponding to "resistance" of liquid) range 5 up to $100 \mathrm{k} \Omega$. To reduce infuences of undesirable switching of output contacts by liquid gorgle in tanks, it is possible to set delay of output reaction $0.5-10 \mathrm{~s}$.

Level switch HRH-1

- Used to control the level in wells, reservoirs, tanks, pools, tankers, containers, etc.
- Within the framework of a single device, the following configurations can be selected (see functions graph):
- two separate level switches
- two probes in one tank
- filling tank from well
- Single-state monitors one level (full or empty tank), double-state monitors two levels (switches on upon one level and switches off upon the second)
- DIP switch on front panel is used to choose function (see functions graph):

> - pumping in
> - pumping out
> - over-pumping

- Option of setting time delay for reacting to the output upon a change in level, any type of delay by DIP switch
- Sensitivity adjustable by potentiometer (probe resistance based on fluid)
- The measuring frequency 500 Hz prevents fluid polarization and oxidation increase of measured probes
- Galvanically separated supply AC 120 V or AC/DC 24 V
-3-MODULE design, mounting onto DIN rail

HRH-1/120V:	8595188117180
HRH-1/24V:	8594030338209

Technical parameters	HRH-1
Function:	3
Supply terminals:	A1- A2
Voltage range:	AC 120 V or AC/DC 24 V
	galvanicaly separated (AC $50-60 \mathrm{~Hz})$
Burden:	max. 4.5 VA

Measuring probes

There can be any measuring probe (any conductive contact, it is recommended to use brass or stainless steel).
The probe wire does not need to be shielded, but it is recommended. When using a shielded wire, the shielding is connected to terminal S.

Symbol

Connection

Description

Description and importance of DIP switches

Functions

Two separate level switches

The relay, which is used to control the level liquids conductive (water, chemical solutions, food, etc.).
In this principle, it goes on about the measurement of liquids by measuring probes. As the measuring used signal is $5 \mathrm{~V} \mathrm{AC} / 500 \mathrm{~Hz}$. Using an AC signal prevents the the increasing oxidation of probes and unwanted polarization and electrolysis liquid. During depending on the DIP settings configurations, switches can control two independent levels or use a combined function for one level (see diagram of functions).
The relay is equipped with regulation of the sensitivity to to liquid resistance. It's also possible to eliminate some of the unwanted switching in the sensitivity settings according to specific conditions (for example, pollution probe sediments, humidity, etc.). It's also possible for each probe to set the delay in the range of $0.5-10$ s, and using the DIP switch type delay (when you turn the relay on and off, depending on application).

Example of usage

For controlling two independent tanks

For controlling the level combination of upper and bottom probe

Output relays for pump control or other output devices, Selecting contacts is depending on the selected function

Note:
As a common probe, it could be used with an advantage such as metal pipes, tanks, etc.
Due to the isolation of probes from a supply voltage, and the measured voltage which is up to 5 V , it is possible to connect probes using standard communication cables.

Level switch HRH-7

EAN code
HRH-7: 8595188149471

Technical parameters	HRH-7
Function:	2
Supply terminals:	A1-A2
Supply voltage:	24... 240 V AC / DC ($\mathrm{AC} 50-60 \mathrm{~Hz}$)
Burden:	max. 2 VA
Supply voltage tolerance:	-15\%; +10\%
Max. value of overcharge protection:	16 A
Measuring circuit	
Sensitivity (input resistance):	adjustable from $5 \mathrm{k} \Omega-100 \mathrm{k} \Omega$
Voltage on electrodes:	max. AC 3.5 V
Current on probes:	$\mathrm{AC}<0.1 \mathrm{~mA}$
Time response:	max. 400 ms
Max. capacity of probe cable:	800 nF (sensitivity 5k Ω), 100 nF (sensitivity $100 \mathrm{k} \Omega$)
Time delay (t):	adjustable, $0.5-10 \mathrm{sec}$
Time delay (ti):	1.5 sec
Accuracy	
Setting accuracy (mechanical):	$\pm 5 \%$
Output	
Number of contacts:	1x changeover / DPDT (AgSnO_{2})
Current rating:	Resistive load: $15 \mathrm{~A} / 240 \mathrm{~V} \mathrm{AC} / 24 \mathrm{~V} \mathrm{DC}$ Inductive load: $1 \mathrm{HP} / 240 \mathrm{~V}, 1 / 2 \mathrm{HP} / 120 \mathrm{~V}$
Minimum switching capacity $D C$:	500 mW
Mechanical life:	3×10^{7}
Electrical life resistive load:	0.7×10^{5}
Other information	
Operating temperature:	$-4^{\circ} \mathrm{F}$ to $131{ }^{\circ} \mathrm{F}\left(-20^{\circ} \mathrm{C}\right.$ to $\left.55^{\circ} \mathrm{C}\right)$
Storage temperature:	$-22^{\circ} \mathrm{F}$ to $158{ }^{\circ} \mathrm{F}\left(-30^{\circ} \mathrm{C}\right.$ to $\left.70^{\circ} \mathrm{C}\right)$
Electrical strength:	3.75 kV (supply - sensor)
Operating position:	any
Protection:	IP65
Overvoltage category:	III.
Contamination degree:	2
Cable size (mm^{2}):	$\begin{gathered} \text { max. } 1 \times 4, \text { max. } 2 \times 2.5 / \\ \text { with sleeve max. } 1 \times 2.5,2 \times 1.5 \text { (AWG } 12)(0.4 \mathrm{Nm}) \end{gathered}$
Dimension:	$4.5^{\prime \prime} \times 4.5^{\prime \prime} \times 2.2^{\prime \prime}(114 \times 114 \times 56 \mathrm{~mm})$
Weight:	8.3 oz. (234 g)
Related standards:	EN 60255-6, EN 61010-1
Recommended measuring probes:	see pg. 62

Symbol

- Suitable to operate / work in harsh conditions due to the high degree of protection IP65
- Swich monitors the level changes in wells, reservoirs, tanks, tankers etc.
- It is possible to select the following configurations:
- one-level switch of conductive liquids monitors one level (by connecting H and D)
- two-level switch of conductive liquids monitors two levels (switches on at one level and switched off at another level)
- Choice of function PUMP-UP or PUMP-DOWN
- Adjustable time delay of output ($0.5-10 \mathrm{~s}$)
- Adjustable sensitivity using potentiometer ($5-100 \mathrm{k} \Omega$)
- Measuring frequency 10 Hz prevents liquid polarization and increased oxidation of measuring probes
- Measuring circuits are galvanically separated from the power source of the product and circuits of the relay contact by enhanced insulation according to EN 60664-1 for overvoltage category III.

Device description

Function

An $A C$ current is used for measuring to prevent polarization and electrolysis of fluid and unwanted oxidation of measuring probes. Three probes are used for measuring: H- upper level, D-lower level and C - common probe. If using a tank made from conductive material, it is possible to use the tank itself as probe C.

If it is necessary to monitor only one level, there are two connection options:

1. Inputs H and D are connected to a single probe - in this case the sensitivity is decreased to half ($2.5 \mathrm{~F} . .50 \mathrm{k} \Omega$).
2. Inputs H and C are connected and the probe is connected to input D - in this case, the original sensitivity remains (5... 100k Ω).

It is also possible to connect probe C with a protective conductor of the power system (PE).

Connection

connection for power supply 120 V AC

Example of connecting the level switch to a 1-phase pump at a well, borehole

Example of connecting the level switch to a 3-phase pump at the well, borehole

connection for power supply 24 ... 240 V AC/DC

Monitoring TWO LEVELS of the FLUID LEVEL minimum / maximum - DRAINING function - (PUMP DOWN)
Description of draining function:
This function is used in a well or borehole where the difference between the upper and lower probes determines how much water the pump can pump out and protect against running dry.
After detecting the maximum level, the set reaction delay begins running. After this period, the output contact immediately switches on the pump until the minimum level is reached, when the set delay begins running once again. The pump then switches off.

Monitoring TWO LEVELS minimum / maximum - REPLENISHING function - (PUMP UP)

Description of replenishing function:
This function is used when you need to regularly pump in water to a well or borehole, which is leaking. After detecting the minimum level, the set reaction delay begins running. After this period, the output contact immediately switches on the pump for the period until it reaches the maximum level, where the set delay begins running once again. The pump then switches off.

Monitoring TWO LEVELS minimum / maximum- DRAINING function - (PUMP DOWN)
Description of draining function:
The function is used to protect against overflows and flooding of areas.
After detecting the maximum level, the set reaction delay begins running. After this period, the output contact immediately switches on the 3-phase pump until the minimum level is reached, when the set delay begins running once again. The pump then switches off.

Level switches accessories - Level sensors SHR

EAN code

SHR-1-M: 8595188110105
SHR-1-N: 8595188111379

EAN code
SHR-2: 8595188111263

EAN code

SHR-3: 8595188111270

SHR-1-M: brass sensor
SHR-1-N: stainless steel sensor

- Sensor to control flooding
- Electrode with diametr $0.2^{\prime \prime}(4 \mathrm{~mm})$ is placed in plastic cover
- Panel or to holder mounting
- Conductor is connected to terminal board, shrink bushing for feeder place insulation is a part of device
- Max. wire profile: $2.5 \mathrm{~mm}^{2}$ (AWG10)
- Installation: after connecting a wire to the sensor, run the shrink bushing over the wire onto the sensor.
- Heat the sensor and by shrinking the connection of sensor and wire will be hermetical
- Weight: 0.3 oz. (9.7 g)
- Operating temperature: $-13^{\circ} \mathrm{F}$ to $140^{\circ} \mathrm{F}\left(-25^{\circ} \mathrm{C}\right.$ to $\left.60^{\circ} \mathrm{C}\right)$
- Total sensor lenght: 2.58 " $(65.5 \mathrm{~mm})$

Level probe SHR-2

- Detection sensor is electrode, which in connection with switchable device is used for level detection for example in wells, tanks...
- To be ued in electric conductive fluids and mechanically polluted fluids with temperature: $33.8^{\circ} \mathrm{F}$ to $176^{\circ} \mathrm{F}\left(1^{\circ} \mathrm{C}\right.$ to $\left.80^{\circ} \mathrm{C}\right)$
- Stainless steel one-pole electrode reside in PVC cover, intended for tank wall mounting or mounting by socket
- To ensure corret function of the sensor, it is necessary to have the electrode without dirt which could disable the connection of the electrode and fluid and thus lead to malfunction
- Max. wire profile: $2.5 \mathrm{~mm}^{2}$ (AWG10)
- Recomended wire D05V-K0.75/3.2
- Installation:
- conductor wire is connected by feazing of two brass screws to stainless steel electrode
- conductor is caulked by bushing Pg7 with protection degree IP68
- Weight: 1.7 oz. (48.6 g)
- Dimensions: max. diameter $0.8^{\prime \prime}(21 \mathrm{~mm})$, lenght $3.8^{\prime \prime}(96 \mathrm{~mm})$

SHR-2 in open state

Level probe SHR-3

- Stainless probe to be used into demanding industrial environments, designated for screwing into tank wall or cover
- The probe is installed in horisontal, vertical or in sidelong position on tank side or in tank cover. Installation is done by soldering or by fixing nut. It is necessary to use $1^{\prime \prime}(24 \mathrm{~mm})$ screw. It is necessary to use an adequate torque with regards to a seal and operational overpressure in a tank.
- Sensor has connecting wire - lenght $39.4^{\prime \prime}(3 \mathrm{~m})$, which is connected to sensor to scan electrode and sensor bushing connecting wire is double-wire PVC AWG $18\left(0.75 \mathrm{~mm}^{2}\right)$, connection of wires: brown - scan electrode, blue - sensor bushing.
- Connection M18x1.5 screw
- Protection degree IP 67
- Sensor weight without cable: 3.3 oz. (100 g)
- Operating surroundings: place without the danger of detonation, temperature on screw: max. $203^{\circ} \mathrm{F}\left(95^{\circ} \mathrm{C}\right)$
- Pressure immunity: on $77^{\circ} \mathrm{F}\left(25^{\circ} \mathrm{C}\right) 4 \mathrm{MPa}$, on $203^{\circ} \mathrm{F}\left(95^{\circ} \mathrm{C}\right) 1.5 \mathrm{MPa}$
- Weight: 8.4 oz. (239 g)
- Material: bushing and sean electrode: stainless steel W.Nr. 1.4301, insulation insert of electrode: PTFE
- Internal material: self- extinguishing epoxide resin
- Operating temperature: $-13^{\circ} \mathrm{F}$ to $140^{\circ} \mathrm{F}\left(-25^{\circ} \mathrm{C}\right.$ to $\left.60^{\circ} \mathrm{C}\right)$
- Total sensor lenght: 2.58 " ${ }^{\prime}(65.5 \mathrm{~mm})$
- Dimensions: see pg 85

Thermostats and hygrostats

Analog

Digital

Hygro-thermostat

RHT-1
Hygro-thermostat for temperature monitoring and regulation in range 32 to $140^{\circ} \mathrm{F}\left(0\right.$ to $\left.60^{\circ} \mathrm{C}\right)$ and relative humidity monitoring and regulation in range $50 \ldots . .90 \%$.

Accessories

TC, TZ, PT-100 External temperature sensors for thermostats in lengths $9.8^{\prime}(3 \mathrm{~m}), 19.7^{\prime}(6 \mathrm{~m}), 39.4^{\prime}(12 \mathrm{~m})$ $\mathrm{TC} / T Z$: thermistor NTC $12 \mathrm{k} \Omega / 77^{\circ} \mathrm{F}\left(25^{\circ} \mathrm{C}\right)$ PT: element PT-100 (only TER-3G).

Overview table

		Type		Sensor			Supply							$\begin{aligned} & \text { 든 } \\ & \text { N } \\ & \text { 흠 } \end{aligned}$	
$\stackrel{\otimes}{\beth}$	$\frac{\text { ⿹ㅡㅁ }}{0}$	$$	$\overline{\bar{O}}$		든 는	$\stackrel{\text { 릋 }}{2}$		$\underset{\text { ্̇ৰ }}{\underset{\sim}{*}}$				n ¢ 気 조			
TER-3A	1M-DIN	\bullet	x	X	\bullet	NTC	X	X	\bigcirc	X	$\begin{aligned} & -22^{\circ} \mathrm{F} \text { to } 50^{\circ} \mathrm{F} \\ & \left(-30 \text { to } 10^{\circ} \mathrm{C}\right) \end{aligned}$	$\begin{gathered} 32.9 \text { to } 41^{\circ} \mathrm{F} \\ \left(0.5 \text { to } 5^{\circ} \mathrm{C}\right) \end{gathered}$	X	single thermostat into a switchboard with external sensor for temperature in cooling and against freezing	
TER-3B	1M-DIN	\bullet	x	X	\bullet	NTC	X	X	-	x	$32^{\circ} \mathrm{F}$ to $104^{\circ} \mathrm{F}$ (0 to $40^{\circ} \mathrm{C}$)	$\begin{gathered} 32.9 \text { to } 41^{\circ} \mathrm{F} \\ \left(0.5 \text { to } 5^{\circ} \mathrm{C}\right) \end{gathered}$	x	single thermostat into a switchboards with external sensor for sensing room and operational temperature	
TER-3C	1M-DIN	\bullet	X	X	\bullet	NTC	X	X	-	X	$86^{\circ} \mathrm{F}$ to $158^{\circ} \mathrm{F}$ $\left(30 \text { to } 70^{\circ} \mathrm{C}\right. \text {) }$	$\begin{gathered} 32.9 \text { to } 41^{\circ} \mathrm{F} \\ \left(0.5 \text { to } 5^{\circ} \mathrm{C}\right) \end{gathered}$	x	single thermostat into a switchboards with external sensor for sensing temperature in devices (overheating...)	
TER-3D	1M-DIN	\bullet	X	X	\bullet	NTC	X	X	-	X	$32^{\circ} \mathrm{F}$ to $140^{\circ} \mathrm{F}$ $\left(0\right.$ to $+60^{\circ} \mathrm{C}$)	$\begin{gathered} 32.9 \text { to } 41^{\circ} \mathrm{F} \\ \left(0.5 \text { to } 5^{\circ} \mathrm{C}\right) \end{gathered}$	x	single thermostat into a switchboard with external sensor for sensing operational temperature of machines and devices	
TER-3E	1M-DIN	\bullet	X	X	\bullet	NTC	X	X	\bullet	X	$32^{\circ} \mathrm{F}$ to $140^{\circ} \mathrm{F}$ (0 to $60^{\circ} \mathrm{C}$))	$\begin{aligned} & 34^{\circ} \mathrm{F} \\ & \left(1^{\circ} \mathrm{C}\right) \end{aligned}$	X	as TER-3D but with fixed hysteresis	
TER-3F	1M-DIN	\bullet	X	\bullet	x	NTC	X	X	-	X	$32^{\circ} \mathrm{F}$ to $140^{\circ} \mathrm{F}$ (0 to $60^{\circ} \mathrm{C}$)	$\begin{aligned} & 34^{\circ} \mathrm{F} \\ & \left(1^{\circ} \mathrm{C}\right) \end{aligned}$	x	single thermostat into a switchboard with in-built sensor, monitors operational temperature in a switchboard	
TER-3G	1M-DIN	\bullet	x	X	\bullet	PT100	x	X	-	X	$32^{\circ} \mathrm{F}$ to $140^{\circ} \mathrm{F}$ (0 to $60^{\circ} \mathrm{C}$)	$\begin{gathered} 32.9 \text { to } 41^{\circ} \mathrm{F} \\ \left(0.5 \text { to } 5^{\circ} \mathrm{C}\right) \end{gathered}$	X	as TER-3D but with input for sensor PT100	
TER-3H	1M-DIN	\bullet	X	X	\bullet	NTC	X	X	\bigcirc	X	$\begin{aligned} & 5^{\circ} \mathrm{F} \text { to } 113^{\circ} \mathrm{F} \\ & \left(-15 \text { to } 45^{\circ} \mathrm{C}\right) \end{aligned}$	$\begin{gathered} 32.9 \text { to } 41^{\circ} \mathrm{F} \\ \left(0.5 \text { to } 5^{\circ} \mathrm{C}\right) \end{gathered}$	x	as TER-3A but with a different temperature range - for cooling and heating	
TER-4	3M-DIN	\bullet	X	X	$(2 x)$	NTC	-	-	X	-	$\begin{aligned} & -40^{\circ} \mathrm{F} \text { to } 230^{\circ} \mathrm{F} \\ & \left(-40 \text { to } 110^{\circ} \mathrm{C}\right) \end{aligned}$	$\begin{array}{r} 32.9 \text { to } 37^{\circ} \mathrm{F} \\ \left(0.5 \text { to } 2.5^{\circ} \mathrm{C}\right) \\ \hline \end{array}$	X	two-state thermostat (2 inputs, 2 outputs), two independent or dependent thermostats, accurate setting, wide temperature range	67
TER-9	2M-DIN	X	\bullet	X	(2x)	NTC	\bullet	\bigcirc	X	-	$\begin{aligned} & -40^{\circ} \mathrm{F} \text { to } 230^{\circ} \mathrm{F} \\ & \left(-40 \text { to } 110^{\circ} \mathrm{C}\right) \end{aligned}$	$\begin{aligned} & 32.9 \text { to } 41^{\circ} \mathrm{F} \\ & \left(0.5 \text { to } 5^{\circ} \mathrm{C}\right) \end{aligned}$	X	multifunction (6 thermo functions) digital thermostat with in-built time switch clock, 2 inputs / 2 outputs	68
TER-7	1M-DIN	\bullet	X	X	\bullet	PTC	X	X	\bullet	X	x	Resistance $1.8-3.3 \mathrm{k} \Omega$	X	thermistor relay for protection of motor overheating, input designated for sensor PTC in-built in motor winding	70
ATV-1	valve	X	\bullet	\bullet	x	built -in	X	X	X	X	$46.4^{\circ} \mathrm{F}$ to $82.4^{\circ} \mathrm{F}$ (8 to $28^{\circ} \mathrm{C}$)	x	X	thermostatic direction valves, temperature regulation $46.4^{\circ} \mathrm{F}$ to $82.4^{\circ} \mathrm{F}\left(8 . .28^{\circ} \mathrm{C}\right)$	71
RHT-1	1M-DIN	\bullet	X	\bullet	x	built -in	X	X	-	X	$32^{\circ} \mathrm{F}$ to $140^{\circ} \mathrm{F}$ (0 to $60^{\circ} \mathrm{C}$)	$\begin{gathered} \mathrm{H}-4 \% \\ \mathrm{~T}-36.5^{\circ} \mathrm{F} \\ \left(2.5^{\circ} \mathrm{C}\right) \end{gathered}$	50.. 90%	hygro-thermostat for temperature monitoring and regulation in range 32 to $140^{\circ} \mathrm{F}\left(0^{\circ} \mathrm{C}\right.$ to $\left.60^{\circ} \mathrm{C}\right)$ and relative humidity in range 50 .. 90%	72

Thermostats range TER-3 (A, B, C, D, G, H)

- Single thermostat for temperature monitoring and regulation in range $-22^{\circ} \mathrm{F}$ to $158^{\circ} \mathrm{F}\left(-30^{\circ} \mathrm{C}\right.$ to $\left.70^{\circ} \mathrm{C}\right)$ in six ranges
- It can be used for monitoring temperature e.g. in switchboards, heating systems, cooling systems, liquids, radiators, motors, devices, open spaces, etc.
- Function of short-circuit or sensor disconnection monitoring
- Possibility to set function "heating" / "cooling" (setting is done by DIP switch)
- Adjustable hysteresis (sensitivity), switching by potentiometer in range 32.9 to $41^{\circ} \mathrm{F}\left(0.5\right.$ to $\left.5^{\circ} \mathrm{C}\right)$
- Choice of external temperature sensors with double insulation in standard lengths 9.8',19.7' and 39.4' (3, 6 and 12 m)
- It is possible to place sensor directly on terminal block - for temperature monitoring in a switchboard or in its surroundings
- Multivoltage supply AC/DC 24-240 V, not galvanically separated
- Red LED indicates status of output, green LED indicates energization of the device
- 1-MODULE, DIN rail mounting

TER-3G: 8595188138451
TER-3H: 8595188138468

Technical parameters	TER-3
Function:	single level
Supply terminals:	A1-A2
Voltage range:	AC/DC $24-240 \mathrm{~V}$ (galvanically unseparated) (AC 50-60Hz)
Burden:	2 VA
Operating range:	-15\%; + 10%
Measuring circuit	
Measuring terminals:	T1-T1
Temperature range: (according to product type sensitivity)	
Hysteresis:	ajustable in range 32.9 to $41^{\circ} \mathrm{F}\left(0.5\right.$ to $\left.5^{\circ} \mathrm{C}\right)$
Sensor:	external, thermistor NTC, except for TER-3G (Pt100)
Sensor fault indication (short circuit/disconnect):	flashing red LED
Accuracy	
Setting accuracy (mech.):	5%
Switching difference:	$32.9{ }^{\circ} \mathrm{F}\left(0.5{ }^{\circ} \mathrm{C}\right)$
Temperature dependance:	$<0.1 \% /{ }^{\circ} \mathrm{F}\left({ }^{\circ} \mathrm{C}\right)$
Output	
Number of contacts:	1x NO-SPST (AgSnO_{2})
Current rating:	Resistive load: $15 \mathrm{~A} / 240 \mathrm{~V} \mathrm{AC} / 24 \mathrm{~V} \mathrm{DC}$ Inductive load: $1 \mathrm{HP} / 240 \mathrm{~V}, 1 / 2 \mathrm{HP} / 120 \mathrm{~V}$
Min. breaking capacity DC:	500 mW
Output indication:	red LED
Mechanical life:	3×10^{7}
Electrical life resistive load:	0.7×10^{5}
Other information	
Operating temperature:	$-4^{\circ} \mathrm{F}$ to $131{ }^{\circ} \mathrm{F}\left(-20^{\circ} \mathrm{C}\right.$ to $\left.55^{\circ} \mathrm{C}\right)$
Storage temperature:	$-22^{\circ} \mathrm{F}$ to $158{ }^{\circ} \mathrm{F}\left(-30^{\circ} \mathrm{C}\right.$ to $\left.70^{\circ} \mathrm{C}\right)$
Electrical strength:	2.5 kV (supply - output)
Operating position:	any
Mounting:	DIN rail EN 60715
Protection degree:	IP 40 from front panel/IP 10 terminals
Overvoltage category:	III.
Pollution degree:	2
Max. cable size (mm^{2}):	$\begin{aligned} & \text { solid wire max. } 2 \times 2.5 \text { or } 1 \times 4 \text {, } \\ & \text { with sleeve max. } 1 \times 2.5 \text { or } 2 \times 1.5 \text { (AWG } 12)(0.4 \mathrm{Nm}) \end{aligned}$
Dimensions:	$3.5^{\prime \prime} \times 0.7^{\prime \prime} \times 2.5$ " $90 \times 17.6 \times 64 \mathrm{~mm}$)
Weight:	2.6 oz. (73 g)
Standards:	EN 60730-2-9, EN 61010-1

Example of an order

Please specify a type of thermostat in your order (TER-3A, TER-3B .. or TER-3H) types differ in temperature range and supply voltage.

Connection

It is a single but practical thermostat with separated sensor for monitoring temperature. Device is placed in a switchboard and external sensor senses temperature of required space, object, or liquid. Supply is not galvanically separated from sensor. Sensor is double insulated. Maximal length of delivered sensor is $39.4^{\prime}(12 \mathrm{~m})$. Device has in-built indication of sensor damage, which means that in case of short-circuit or disconnection red LED flashes. Thanks to adjustable hysteresis, it is advantageous to regulate width of the range and thus define sensitivity of load switching. Sensed temperature is decreased by set hysteresis. When installing it is necessary to keep in mind that hysteresis is increased by temperature gradient between sensor's jacket and thermistor.

Description

Thermostats range TER-3 (E, F)

- Single thermostat for temperature monitoring and regulation in range $32^{\circ} \mathrm{F}$ to $140^{\circ} \mathrm{F}\left(0\right.$ to $\left.60^{\circ} \mathrm{C}\right)$
- It can be used for temperature monitoring e.g. in switchboards, heating systems, liquids, radiators, motors, devices, open spaces, etc.
- Fixed hysteresis at $34^{\circ} \mathrm{F}\left(1^{\circ} \mathrm{C}\right)$
- TER-3E- choice of external temperature sensors with double insulation in standard lengths $9.8^{\prime}, 19.7^{\prime}$ and $39.4^{\prime}(3,6$ and 12 m$)$
- TER-3F - sensor is a part of device, serves for monitoring temperature in a switchboard
- Supply voltage AC /DC 24-240 V
- Output status is indicated by red LED
- 1-MODULE, DIN rail mounting

TER-3F: 8595188138444

Technical parameters	TER-3E	TER-3F
Function:	single level	
Supply terminals:	A1-A2	
Voltage range:	AC/DC $24-240 \mathrm{~V}(\mathrm{AC} 50-60 \mathrm{~Hz})$	
Burden:	2 VA	
Operating range:	-15\%; +10\%	
Measuring circuit		
Measuring terminals:	T1-T1	x
Temperature range:	$32^{\circ} \mathrm{F}$ to $140^{\circ} \mathrm{F}\left(0\right.$ to $\left.60^{\circ} \mathrm{C}\right)$	
Hysteresis:	fixed $34^{\circ} \mathrm{F}\left(1^{\circ} \mathrm{C}\right)$	
Sensor:	thermistor NTC	in-built
Sensor fault indic. (short-circuit /		

disconnection):	flashing red LED
Accuracy	
Setting accuracy (mech.):	5%
Switching difference:	$32.9^{\circ} \mathrm{F}\left(0.5^{\circ} \mathrm{C}\right)$
Temperature dependance:	$<0.1 \% /{ }^{\circ} \mathrm{F}\left({ }^{\circ} \mathrm{C}\right)$

Temperature dependance:		$<0.1 \% /{ }^{\circ} \mathrm{F}\left({ }^{\circ} \mathrm{C}\right)$
Output		
Number of contacts:		$1 \times \mathrm{NO}-\mathrm{SPST}\left(\mathrm{AgSnO}_{2}\right)$
Current rating:	Resistive load:	$15 \mathrm{~A} / 240 \mathrm{~V} \mathrm{AC} / 24 \mathrm{~V}$ DC

Current rating:	Resistive load: Inductive load:	$15 \mathrm{~A} / 240 \mathrm{~V} \mathrm{AC} / 24 \mathrm{~V} \mathrm{DC}$
	$1240 \mathrm{~V}, 1 / 2 \mathrm{HP} / 120 \mathrm{~V}$	

Output indication:	red LED
Mechanical life:	3×10^{7}
Electrical life resistive load:	0.7×10^{5}

Other information

Operating temperature:	$-4^{\circ} \mathrm{F}$ to $131^{\circ} \mathrm{F}\left(-20^{\circ} \mathrm{C}\right.$ to $\left.55^{\circ} \mathrm{C}\right)$
Storage temperature:	$-22^{\circ} \mathrm{F}$ to $158{ }^{\circ} \mathrm{F}\left(-30^{\circ} \mathrm{C}\right.$ to $\left.70^{\circ} \mathrm{C}\right)$
Electrical strength:	2.5 kV (supply - output)
Operating position:	any
Mounting:	DIN rail EN 60715
Protection degree:	IP 40 from front panel /IP 10 terminals
Overvoltage category:	III.
Pollution degree:	2

Max. cable size (mm^{2}):	$\begin{aligned} & \text { solid wire max. } 2 \times 2.5 \text { or } 1 \times 4 \text {, } \\ & \text { with sleeve max. } 1 \times 2.5 \text { or } 2 \times 1.5(\text { AWG } 12)(0.4 \mathrm{Nm}) \end{aligned}$	
Dimensions:	$3.5^{\prime \prime} \times 0.7^{\prime \prime} \times 2.5^{\prime \prime}(90 \times 17.6 \times 64 \mathrm{~mm})$	
Weight:	2.58 oz. (73 g)	2.61 oz. (74 g)
Standards:	EN 60730-2-9, EN 61010-1	

Example of an order

Please specify a type of thermostat in your order (TER-3E, TER-3F).

Function

TER-3E, TER-3F

It is a single thermostat for temperature monitoring with separated sensor (except for TER-3F). Device is located in a switchboard and external sensor senses temperature of required space, object or liquid. Supply is not galvanically separated from sensor but sensor is double insulated. Maximal length of sensor cable is $39.4^{\prime}(12 \mathrm{~m})$. Temperature sensing is decreased by set hysteresis. When installing it is necessary to keep in mind that hysteresis is increased by temperature gradient between sensor's jacket and thermistor.

2-stage thermostat TER-4

- Two-state thermostat for temperature monitoring and regulation in a wide range $-40^{\circ} \mathrm{F}$ to $230^{\circ} \mathrm{F}\left(-40^{\circ} \mathrm{C}\right.$ to $\left.110^{\circ} \mathrm{C}\right)$ with a switch for temperature ranges shift and fine temperature setting (high accuracy of setting)
- It can be used for temperature monitoring in e.g. switchboards, heating systems, cooling systems, open spaces, objects, liquids, radiators, etc.
- 2 thermo inputs for sensor NTC $12 \mathrm{k} \Omega / 77^{\circ} \mathrm{F}\left(25^{\circ} \mathrm{C}\right)$
- Possibility to choose if both thermostats should work independently or dependently (by DIP switch)
- Function of short-circuit or sensor disconnection monitoring
- Possibility to set functions "heating " / "cooling" (setting is done by DIP switch)
- Adjustable hysteresis (sensitivity) of switching 32.9 or $37^{\circ} \mathrm{F}\left(0.5\right.$ or $\left.2.5^{\circ} \mathrm{C}\right)$ (DIP switch)
- Choice of external thermo sensors with double insulation in standard lengths $9.8^{\prime}, 19.7^{\prime}$ and 39.4^{\prime} (3,6 and 12 m)
- It is possible to place the sensor directly on terminal block - to monitor temperature in a switchboard or in its surroundings
- Galvanically separated supply AC/DC 24 V
- Output status indicated by red LED, faulty status of sensor by yellow LED
- 3-MODULE, DIN rail mounting

TER-4/24V: 8594030338148

Symbol
Connection

Technical parameters	TER-4	
Function:	double thermostat	
Supply terminals:	A1-A2	
Voltage range:	AC/DC 24V galvanically separated	
Burden:	max. 4.5 VA	
Supply voltage tolerance:	-15\%; + 10%	
Measuring circuit		
Measuring terminals:	T1-T1 and T2-T2	
Temperatue ranges (set via switch individually for each level):	-40 to $77^{\circ} \mathrm{F}\left(-40\right.$ to $\left.-25^{\circ} \mathrm{C}\right)$ 77 to $50^{\circ} \mathrm{F}\left(-25\right.$ to $\left.-10^{\circ} \mathrm{C}\right)$ 50 to $41^{\circ} \mathrm{F}\left(-10\right.$ to $\left.5^{\circ} \mathrm{C}\right)$ 41 to $70^{\circ} \mathrm{F}\left(5\right.$ to $\left.20^{\circ} \mathrm{C}\right)$ 70 to $95^{\circ} \mathrm{F}\left(20\right.$ to $\left.35^{\circ} \mathrm{C}\right)$	95 to $122^{\circ} \mathrm{F}\left(35\right.$ to $\left.50^{\circ} \mathrm{C}\right)$ 122 to $149^{\circ} \mathrm{F}\left(50\right.$ to $\left.65^{\circ} \mathrm{C}\right)$ 149 to $176^{\circ} \mathrm{F}\left(65\right.$ to $\left.80^{\circ} \mathrm{C}\right)$ 176 to $203^{\circ} \mathrm{F}\left(80\right.$ to $\left.95^{\circ} \mathrm{C}\right)$ 203 to $230^{\circ} \mathrm{F}\left(95\right.$ to $110^{\circ} \mathrm{C}$)
Fine temperature setting:	$32-59{ }^{\circ} \mathrm{F}(0-1$	in selected range

Fine temperature setting:
Hysteresis for T1:
Hysteresis for T2:
Sensor:
Sensor failure indication:

Accuracy

Setting accuracy (mech.):
Repeat accuracy:
Temperature dependance:
Output
Number of contacts:
Current rating:

Inrush current:
Min. breaking capacity $D C$:
Output indication:
Mechanical life:
Electrical life resistive load:
Other information
Operating temperature:
Storage temperature:
Electrical strength:
Operating position:
Mounting:
Protection degree:
Overvoltage category:
Pollution degree:
Max. cable size $\left(\mathrm{mm}^{2}\right)$:

Dimensions:
Weight:
Standards:
$32-59^{\circ} \mathrm{F}\left(0-15^{\circ} \mathrm{C}\right)$, in selected range
adjustable, 32.9 or $37^{\circ} \mathrm{F}\left(0.5\right.$ or $\left.2.5^{\circ} \mathrm{C}\right)$ (DIP switch)
adjustable, 32.9 or $37^{\circ} \mathrm{F}\left(0.5\right.$ or $\left.2.5^{\circ} \mathrm{C}\right)$ (DIP switch)
thermistor NTC $12 \mathrm{k} \Omega / 77^{\circ} \mathrm{F}\left(25^{\circ} \mathrm{C}\right)$ yellow LED
5%
$32.9^{\circ} \mathrm{F}\left(0.5^{\circ} \mathrm{C}\right)$
$<0.1 \% /{ }^{\circ} \mathrm{F}\left({ }^{\circ} \mathrm{C}\right)$
$2 x$ changeover / SPDT (AgNI / Silver Alloy)
Resistive load: $\quad 15 \mathrm{~A} / 240 \mathrm{~V} \mathrm{AC} / 24 \mathrm{~V}$ DC
Inductive load: $\quad 1 \mathrm{HP} / 240 \mathrm{~V}, 1 / 2 \mathrm{HP} / 120 \mathrm{~V}$
$30 \mathrm{~A} /<3 \mathrm{~s}$
500 mW
red LED
3×10^{7}
0.7×10^{5}
$-4^{\circ} \mathrm{F}$ to $131^{\circ} \mathrm{F}\left(-20^{\circ} \mathrm{C}\right.$ to $\left.55^{\circ} \mathrm{C}\right)$
$-22^{\circ} \mathrm{F}$ to $158^{\circ} \mathrm{F}\left(-30^{\circ} \mathrm{C}\right.$ to $\left.70^{\circ} \mathrm{C}\right)$
4 kV (supply - output)
any
DIN rail EN 60715
IP 40 from front panel / IP 20 terminals
III.

2
solid wire max. 1×2.5 or 2×1.5,
with sleeve max. 1×1.5 (AWG 12) (0.4 Nm)
$3.5^{\prime \prime} \times 2^{\prime \prime} \times 2.6^{\prime \prime}(90 \times 52 \times 65 \mathrm{~mm})$
8.4 oz. (238 g)

EN 60730-2-9, EN 61010-1

Description

Function

Independent function

Dependent function

Blocking function:

When DIP switch 4 is in position 0 N , condition for thermostat switching is switching output $15-18$ at both individual thermostats (series function). Thus it is possible to use e.g. first thermostat as operational and the other as an emergency one. Output 25-28 operates normally, according to T 2 .

This device includes 2 thermostats in one. Thermostat has 2 thermo inputs, 2 outputs and individual temperature setting. It offers two possibilities of use. Firstly it can be used as two individual thermostats (e.g. for monitoring two temperature levels of one device or as a control of individual devices), secondly it is possible to set depending function of both thermostats, when thermostat 2 blocks thermostat No. 1 Advantage of this thermostats is a wide temperature range - $40 . .230^{\circ} \mathrm{F}\left(-40 . .110^{\circ} \mathrm{C}\right)$ (in one device) with very good mechanical accuracy of setting. It is due to 10 -state switch for thermo ranges and its scale by $59^{\circ} \mathrm{F}\left(15^{\circ} \mathrm{C}\right)$. VIt is possible to use fine tuning by potentiometer by $32-59^{\circ} \mathrm{F}\left(0-15^{\circ} \mathrm{C}\right)$ with accuracy $\pm 34^{\circ} \mathrm{F}\left(1^{\circ} \mathrm{C}\right)$. Device has in-built control of sensor fault (yellow LED). It is possible to set hysteresis 32.9 or $37^{\circ} \mathrm{F}(0.5$ or $2.5^{\circ} \mathrm{C}$).
It is possible to operate the thermostat only with one sensor. In that case it is necessary to connect a resistor $10 \mathrm{k} \Omega$ to the other input. This is included in the package.

Chart information:

Un -supply voltage
T1 -set temperature of thermostat 1 T2 -set temperature of thermostat 2 H1 -set hysteresis of thermostat 1 H2 -set hysteresis of thermostat 2
15-18 output contact of thermostat 1 25-28 output contact of thermostat 2

Multifunction digital thermostat TER-9

- Digital thermostat with 6 functions and built-in time switch clock with day, week and year program. You can also limit temperature functions and courses this way in real time.
- Complex control of home and water heating, solar heating, etc.
- Two thermostats in one, two temperature inputs, two outputs with dry contact
- Maximum universal and variable thermostat including all ordinary thermostat functions
- Functions: two independent thermostats, dependent thermostat, differential thermostat, two level thermostat, zone-based thermostat, dead zone thermostat
- Program setting of output functions, calibration of sensors according to reference temperature (offset)
- The thermostat is subject to the digital clock programs
- Wide operating range of temperature settings, the possibility of measuring in ${ }^{\circ} \mathrm{F}$ and ${ }^{\circ} \mathrm{C}$
- Clear display of set and measured data on a backlit LCD
- Power supply: AC 120 V or 24 V AC/DC (based on type of device)
- The time switch clock has a battery backup, which retains data in case of a power outage (reserve backup time - up to 3 years)
- Easy replacement of the backup battery through the plug-in module, no disassembling is required
- 2-MODULE, DIN rail mounting
Technical parameters TER-9

Supply	
Number of function:	6
Supply terminals:	A1-A2
Voltage range:	AC 120 V or AC/DC 24 V ($\mathrm{AC} 50-60 \mathrm{~Hz}$) galvanically unseparated
Burden:	max. 4 VA
Operating range:	-15\%; +10\%
Type backup battery:	CR 2032 (3V)
Measuring circuit	
Measuring terminals:	T1-T1 and T2-T2
Temperature range:	$-40 . .230^{\circ} \mathrm{F}\left(-40 . .110^{\circ} \mathrm{C}\right)$
Hysteresis (sensitivity):	in an adjustable range $32.9 . .41^{\circ} \mathrm{F}\left(0.5 . .5{ }^{\circ} \mathrm{C}\right)$
Diference temperature:	adjustable $34.122{ }^{\circ} \mathrm{F}\left(1 . .50^{\circ} \mathrm{C}\right)$
Sensor:	thermistor NTC $12 \mathrm{k} \Omega$ at $77{ }^{\circ} \mathrm{F}\left(25^{\circ} \mathrm{C}\right)$
Sensor failure indication:	displayed on the LCD

Symbol

Connection

Description of visual elements on the display

Device description

2 independent single-stage thermostats

Legend:
Ts1-real (measured) temperature 1
Ts2 - real (measured) temperature 2
T1- adjusted temperature T1
T2 - adjusted temperature T2
H1 - adjusted hysteresis for T1
H2 - adjusted hysteresis for T2
dy1 - set switching delay of the output
dy2 - set delay on output breaking
15-18 output contact (for T1)
$25-28$ output contact (for T2)

Depending functions of 2 thermostats

Differential thermostat

Legend:
Ts1 - real (measured) temperature T1
TS2- real (measured) temperature T2 D- adjusted difference
dy1- set switching delay of the output
dy2 - set delay on output breaking
15-18 output contact (for T1)
$25-28$ output contact (for T2)

2-stage thermostat

Legend:
Ts - real (measured) temperature
1 - adjusted temperature
D-adjusted difference
H1 - adjusted hysteresis for T1
H2-T=T1-D
dy1- set switching delay of the output
dy2 - set delay on output breaking
15-18 output contact
$25-28$ output contact

Thermostat with "WINDOW"

egend:
Ts - real (measured) temperature
T1-adjusted temperature
T2 - adjusted temperature T=T1-D
H1 - adjusted hysteresis for T1
H2 - adjusted hysteresis for T2
dy1- set switching delay of the output
dy2 - set delay on output breaking
15-18 output contact
$25-28$ output contact

Thermostat with dead zone

Legend:
Ts - real (measured) temperature
T1-adjusted temperature
T2-T=T1-D
H1 - adjusted hysteresis for T1
H2 - adjusted hysteresis for T2
dy1- set switching delay of the output
dy2 - set delay on output breaking
15-18 output contact (heating)
$25-28$ output contact (cooling)

Classic function of thermostat, output contact switched until adjusted temperature is reached. Hysteresis eliminates frequent switching - output oscillation.

Output 15-18 is closed, if temperature of both thermostats is bellow an adjusted level. When any thermostat reaches adjusted level, the contact 15-18 opens. Serial inner connection of thermostats (logic function AND).

Switching of output corresponds with input, which has lower temperatures when diffference is exceeded. Differencial thermostat is used for keeping two identical temperature e.g. in heating systems (boiler and reservoir), solar systems (collector - reservoir, exchanger), water heating (water heater, water distribution)etc.

Typical example of use for two-stage thermostat is e.g in boiler-room, where there are two biolers from which one is main and the other one is auxiliary. The main boiler is managed according to set temperature and auxiliary boiler is switched in case temperature falls under set difference. Thus it helps to the main boiler in case outside temperature dramatically falls.
In the range of set difference (D) output 15-18 functions as normal thermostat to input 1 (type 1). In case temperature falls under set difference, second output switches too.

Output is closed (heating) only if temperature is within adjusted range. If temperature is out of range, the contact opens. Tis set as T1-D.
The function is used for protection of gutters against freezing.

In case of thermostat with a „dead zone", it is possible to set temperature T 1 and a difference (respectively a width of dead zone D). If temperature is higher than T1, output contact of cooling switches 0 N ; if the temperature gets bellow T 1 , the contact switches 0FF.
If the temperature gets bellow temperature T , the contact of heating switches ON and it switches 0 FF when temperature T is exceeded. This function can be used for example for automatic air warming and cooling in ventilation so the sit is always within the range T 1 and T .

Thermostat for monitoring temperature of motor winding TER-7

TER-7: 8595188137164

- It monitors motor coil temperature
- Fixed levels of switching
- PTC sensor is used for sensing, it is in-built in motor winding by its manufacturer or there is used an external PTC sensor
- MEMORY function - relay is blocked in an error state until until operator intervention (press RESET button)
- RESET of faulty state:
a) button on the front panel
b) by external contact (remote by two wires)
- Function of short-circuit or sensor disconnection monitoring, red LED flashing indicates faulty sensor
- Red LED shines and indicates exceeded temperature
- Terminals of sensor are galvanically separated, they can be shorted out by terminal PE without damaging the device
- Multivoltage supply AC/DC $24-240 \mathrm{~V}$
- 1-MODULE, DIN rail mounting

Function

The device controls temperature of motor winding with PTC thermistor which is mostly placed in motor winding or very close to it. Resistance of PTC thermistor run to max $1.5 \mathrm{k} \Omega$ in cold stage.

By temperature increase the resistance goes strongly up and by overrun the limit of $3.3 \mathrm{k} \Omega$ the contact of output relay switch off - mostly contactor controlling a motor. By temperature decrease and thereby decrease of thermistor resistance under $1.8 \mathrm{k} \Omega$ the output contact of relay again switches on. The relay has function "Control of sensor fault". This controls interruption or disconnection of sensor.When switch is in position "TK" monitoring of faulty sensor is not functional - it is possibel to connect bimetal sensor with only 2 states: ON or OFF. The device can work with bi-metal sensor in this position.
Other safety unit is function "Memory". By temperature overrun (and output switches off) the output is hold in faulty stage until service hit. This bring the relay to normal stage (with RESET button) on front panel or by external contact (remote).

Energy-saving digital thermo-valve ATV-1

Examples of daily heating program
BATHROOM

LIVING ROOM

Adjustment ATV-1

- manual
- via USB programming adapter PROG matic

Using the programming port, in seconds your settings will be transferred into the thermostat.

- This energy-saving digital thermo-valve is a programmable regulation device for various heaters, but mainly radiators
- It can be used to regulate temperature in closed rooms, thus helping to lower heat energy consumption

Manual mode - measuring and checking a manually set temperature
Automatic mode - control between two temperatures based on a set time program:

- comfort temperature (factory settings $70^{\circ} \mathrm{F} / 21^{\circ} \mathrm{C}$)
- energy-saving temperature (factory settings $61^{\circ} \mathrm{F} / 16^{\circ} \mathrm{C}$)
- Intervals of heating and energy-saving operation can be set using a freely adjustable time program
- 8 individually programmable switching times per day:

> -4 heating intervals
> -4 energy-saving intervals

- The device features very quiet operation and long battery life (up 5 years)
- Quick and easy installation

Other functions

1. Time function - the desired temperature can be set for a certain adjustable time interval
2. Vacation function - while you're gone, you can set and maintain the desired temperature
3. Open window function - when the temperature drops, the heating valve automatically closes in order to save energy
4. Child safety block - blocking against undesired interference with the thermostat
5. Freeze protection - if the temperature drops below $43^{\circ} \mathrm{F}\left(6^{\circ} \mathrm{C}\right)$, the valve opens until the temperature again exceeds $46^{\circ} \mathrm{F}$ $\left(8^{\circ} \mathrm{C}\right)$. This keeps heaters from freezing.

Description of device

Adapters

Type of valve	Type of adapter
Heimeier, Junkers Landys+Gyr, MNG, Honeywell, Braukmann thread size M 30x1.5	No adapter necessary + enclosed pin; only for RAV
Danfoss RAV (the valve plunger must be fitted with the enclosed pin)	
Danfoss RA	
Danfoss RAVL	

Package content

Hygro-thermostat RHT-1

- Hygro-thermostat for temperature monitoring and regulation in range $32^{\circ} \mathrm{F}$ to $140^{\circ} \mathrm{F}\left(0^{\circ} \mathrm{C}\right.$ to $\left.60^{\circ} \mathrm{C}\right)$ and relative humidity monitoring and regulation in range 50... 90%
- Possibility of setting of up to 8 conditions for contact switching and function permanently ON/OFF
- Sensor is a part of the device - designated for measuring in switchboards
- Function of sensor control (damage, disturbances...)
- Fixed setting of temperature hysteresis at $36.5^{\circ} \mathrm{F}\left(2.5^{\circ} \mathrm{C}\right)$ and humidity at 4%
- Output state is indicated by red LED
- Supply voltage AC/DC 24-240 V
- 1-MODULE, DIN rail mounting

RHT-1: 8595188137263

Technical parameters	RHT-1
Function:	hygro-thermostat
Supply terminals:	A1-A2
Input:	1VA
Voltage range:	24-240V AC/ DC (AC $50-60 \mathrm{~Hz}$)
Tolerance of voltage range:	-15\%; +10\%
Measuring circuit	
Temperature range:	$32^{\circ} \mathrm{F}$ to $140{ }^{\circ} \mathrm{F}\left(0^{\circ} \mathrm{C}\right.$ to $\left.60^{\circ} \mathrm{C}\right)$
Humidity range:	50.. 90\%
Temperature hysterisis:	$36.5{ }^{\circ} \mathrm{F}\left(2.5{ }^{\circ} \mathrm{C}\right)$
Humidity hysterisis:	4\%
Sensor:	internal
Indication of sensor's fault:	red LED flashing
Accuracy	
Setting accuracy (mechanical):	5\%
Long-term stability of humidity:	typical < 0.8 \% / year
Output	
Number of contacts:	1x NO-SPST (AgSnO_{2})
Current rating:	Resistive load: $15 \mathrm{~A} / 240 \mathrm{~V} \mathrm{AC} / 24 \mathrm{~V} \mathrm{DC}$ Inductive load: $1 \mathrm{HP} / 240 \mathrm{~V}, 1 / 2 \mathrm{HP} / 120 \mathrm{~V}$
Output indication:	red LED shines
Mechanical life:	3×10^{7}
Electrical life:	0.7×10^{5}
Other information	
Operational temperature:	$-4^{\circ} \mathrm{F}$ to $140^{\circ} \mathrm{F}\left(-20^{\circ} \mathrm{C}\right.$ to $\left.60^{\circ} \mathrm{C}\right)$
Storing temperature:	$-22^{\circ} \mathrm{F}$ to $158{ }^{\circ} \mathrm{F}\left(-30^{\circ} \mathrm{C}\right.$ to $\left.70^{\circ} \mathrm{C}\right)$
Electrical strengh:	2.5 kV (supply-output)
Operational position:	vertical, with correct orientation
Mounting:	DIN rail EN 60715
Protection degree:	IP40 from front panel, IP10 on terminals
Overvoltage category:	III.
Pollution degree:	2
Max. cable size (mm^{2}):	$\begin{aligned} & \max .2 \times 2.5, \max .1 \times 4, \\ & \text { with sleeve max. } 1 \times 2.5, \max .2 \times 1.5(\mathrm{AWG} 12)(0.4 \mathrm{Nm}) \end{aligned}$
Dimensions:	$3.5{ }^{\prime \prime} \times 0.7^{\prime \prime} \times 2.5$ " $90 \times 17.6 \times 64 \mathrm{~mm}$)
Weight:	2.4 oz. (69 g)
Standards:	EN 60730-2-9, EN 61010-1

Symbol

Connection

Funcions

Choice of function	Relay switched under the following conditions		
A	$\mathrm{T}>$ Tset	or	$\mathrm{RH}>$ RHset
B	$\mathrm{T}<$ Tset	or	$\mathrm{RH}>$ RHset
C	$\mathrm{T}>$ Tset	or	$\mathrm{RH}<\mathrm{RHset}$
D	$\mathrm{T}<$ Tset	or	$\mathrm{RH}<\mathrm{RHset}$
E	$\mathrm{T}<$ Tset	and	$\mathrm{RH}<\mathrm{RHset}$
F	$\mathrm{T}>$ Tset	and	$\mathrm{RH}<\mathrm{RHset}$
G	$\mathrm{T}<$ Tset	and	$\mathrm{RH}>$ RHset
H	$\mathrm{T}>$ Tset	and	$\mathrm{RH}>$ RHset
ON		relay permanently ON	
OFF		relay permanently OFF	

This device is designated for monitoring of parameters of environment (meaning temperature and relative humidity) in switchboards. It enables setting of eight conditions of constact closing and therefore it is usable for various types of load (e.g. fans, heating, air-conditioning, dehydrating units...).
While installing it is neccessary to take into account the fact that hysterisis rises by persistence of measured values between sensor and ambient environment.
The device is equipped by sensor fault detection. In case of sensor fault, exceeding allowed limits (for temperature $-22^{\circ} \mathrm{F} /-30^{\circ} \mathrm{C}$ and $176^{\circ} \mathrm{F} / 80^{\circ}$; for humidity 5% and 95%) or in case of faulty internal communcation higher than 50% (due to e.g. high ambient disturbances) contact opens and sensor fault is indicated. Sensor fault doesn't have influence on function permanently ON or pemanently OFF.
Note: In case the conditions for switching are not applied, relay is open.

Accessories to Thermostats - Temperature sensors TC, TZ, PT100

Technical parameters	TC	TZ	Pt100
Range:	$32^{\circ} \mathrm{F}$ to $158{ }^{\circ} \mathrm{F}\left(0^{\circ} \mathrm{C}\right.$ to $\left.70{ }^{\circ} \mathrm{C}\right)$	$-40^{\circ} \mathrm{F}$ to $257^{\circ} \mathrm{F}\left(-40^{\circ} \mathrm{C}\right.$ to $\left.125^{\circ} \mathrm{C}\right)$	$-22^{\circ} \mathrm{F}$ to $3922^{\circ} \mathrm{F}\left(-30^{\circ} \mathrm{C}\right.$ to $\left.200^{\circ} \mathrm{C}\right)$
Scanning element:	NTC 12K 5\%	NTC 12K 5\%	PT 100
In air/in water:	(T65) $92 \mathrm{~s} / 23 \mathrm{~s}$	(t65) $62 \mathrm{~s} / 8 \mathrm{~s}$	(т0.5) $\quad-/ 7 \mathrm{~s}$
In air/in water:	(995) $306 \mathrm{~s} / 56 \mathrm{~s}$	(т95) $216 \mathrm{~s} / 23 \mathrm{~s}$	(т0.9) - / 19 s
Cable material:	High temperature PVC	Silicone	Silicone
Terminal material:	High temperature PVC	Nickel plated copper	Copper
Protection degree:	IP 67	IP 67	IP 67
Insulation:	-	-	Double insulation by silicone
Types of temperature sensors:			
- length: - weight:	$\begin{gathered} \text { TC-0 } \\ 3.9^{\prime \prime}(100 \mathrm{~mm}) \\ 0.17 \mathrm{oz} .(5 \mathrm{~g}) \end{gathered}$	$\begin{gathered} \text { TZ-0 } \\ 4.3^{\prime \prime}(110 \mathrm{~mm}) \\ 0.15 \mathrm{oz} .(4.5 \mathrm{~g}) \end{gathered}$	- - -
- length: - weight:	$\begin{gathered} \mathrm{TC}-3 \\ 9.8^{\prime}(3 \mathrm{~m}) \\ 3.8 \mathrm{oz} .(108 \mathrm{~g}) \end{gathered}$	$\begin{gathered} \text { TZ-3 } \\ 9.8^{\prime}(3 \mathrm{~m}) \\ 3.7 \mathrm{oz} .(106 \mathrm{~g}) \end{gathered}$	$\begin{gathered} \text { Pt100-3 } \\ 9.8^{\prime}(3 \mathrm{~m}) \\ 2.3 \mathrm{oz} .(68 \mathrm{~g}) \end{gathered}$
- length: - weight:	$\begin{gathered} \text { TC-6 } \\ \text { 19.6' }(6 \mathrm{~m}) \\ 7 . \text { oz. }^{(213 \mathrm{~g})} \end{gathered}$	$\begin{gathered} \text { TZ-6 } \\ \text { 19.6' }(6 \mathrm{~m}) \\ 7.5 \text { oz. }(216 \mathrm{~g}) \end{gathered}$	$\begin{gathered} \text { Pt100-6 } \\ \text { 19.6' }(6 \mathrm{~m}) \\ 5.2 \mathrm{oz} .(149 \mathrm{~g}) \end{gathered}$
- length: - weight:	$\begin{gathered} \mathrm{TC}-12 \\ 39.4^{\prime}(12 \mathrm{~m}) \\ 16.4 \mathrm{oz} .(466 \mathrm{~g}) \end{gathered}$	$\begin{gathered} \text { TZ1-2 } \\ 39.4^{\prime}(12 \mathrm{~m}) \\ 14.7 \mathrm{oz} .(418 \mathrm{~g}) \end{gathered}$	$\begin{gathered} \text { Pt100-12 } \\ 39.4^{\prime}(12 \mathrm{~m}) \\ 8.7 \text { oz. }(249 \mathrm{~g}) \end{gathered}$

T65 (95): time, which sensor needs to heat up on 65 (95) \% of ambient temperature of environment, in which is located

Resistive values of sensors in dependance on temperature

Temperature $\left({ }^{\circ} \mathrm{C} /{ }^{\circ} \mathrm{F}\right)$	Sensor NTC (kJ)	Sensor PT100 ($\Omega)$
$20 / 68$	14.7	107.8
$30 / 86$	9.8	111.7
$40 / 104$	6.6	115.5
$50 / 122$	4.6	119.4
$60 / 140$	3.2	123.2
$70 / 158$	2.3	127.1

Tolerance of sensor NTC $12 \mathrm{k} \Omega$ is $\pm 5 \%$ by $77^{\circ} \mathrm{F}\left(25^{\circ} \mathrm{C}\right)$.
Long-term resistence stability by sensor PT100 is 0.05% (10000 hours).

Diagramm of sensor warm up via air

PVC -reaction to water temperature from $72.5^{\circ} \mathrm{F}$ to $136.4^{\circ} \mathrm{F}$ (from $22.51^{\circ} \mathrm{C}$ to $58^{\circ} \mathrm{C}$). Silicone - reaction to water temperature from $72.5^{\circ} \mathrm{F}$ to $144.5^{\circ} \mathrm{F}$ (from $22.5^{\circ} \mathrm{C}$ to $\left.63.5^{\circ} \mathrm{C}\right)$.

Sensor photo

Installation contactors

Installation contactors with manual control VSM

Accessories

VSK-11 Auxiliary contacts: $1 \times$ switching, $1 \times$ breaking.

VSK-20
Auxiliary contacts:
$2 \times$ switching.

Installation contactors VS120, VS220, VS420, VS425, VS440, VS463

* $3.8 \mathrm{VA} / 3.8 \mathrm{~W}$ for -04 version of contacts
** Note: In case several contactors are mounted close to each other, you need to use a installation spacer between every other contactor.

Installation contactors with manual control VSM220, VSM425

- Special version of installation contactors with not only basic functions but also with manual control
- For switching accumulative appliances for heating and service water warming
- Description of individual positions of manual control

AUTO: common function as with installation contactors without manualcontrol
1: shifting from AUTO to 1: operational contacts are closed and back contacts are open until there is another impulse to a contactor coil

0 : contacts are open (operational contact) or closed (stand-by contact) regardless voltage

- Optical indicator: ON-OFF
- It is produced in configuration of making and breaking contacts:

VSM220:	$20,11,02$
VSM425:	$40,31,22,04$

- It is possible to connect auxiliary contacts VSK to contactors VSM220, VSM425

EAN code

Technical parameters	VSM220	VSM425
Rated insulation voltage (Ui):	230 V	440 V
Rated thermo-current $\mathrm{I}_{\text {th }}$ (in AC):	20 A	25 A
Switched operation		
AC-1 for 400 V :	x	$16 \mathrm{~kW}, 3$ phase
AC-1 for 230 V :	$4 \mathrm{~kW}, 1$ phase	$9 \mathrm{~kW}, 3$ phase
AC-3 for 400 V :	x	4 kW , 3 phase
AC-3 for 230 V :	1.3 kW only NO, 1 phase	2.2 kW , 3 phase
AC-7a for 400 V :	x	$16 \mathrm{~kW}, 3$ phase
AC-7a for 230 V :	4 kW , 1 phase	$9 \mathrm{~kW}, 3$ phase
AC-7b for 400 V :	x	4 kW , 3 phase
AC-7b for 230 V :	1.3 kW only NO, 1 phase	$2.2 \mathrm{~kW}, 3$ phase
AC-15 for 400 V :	4 A	4 A
AC-15 for 230 V :	6 A	6 A
DC1 $\mathrm{U}_{\mathrm{e}}=24 \mathrm{~V}$:	20 A	25 A
$D C 1 U_{\mathrm{e}}=110 \mathrm{~V}$:	6 A	6 A
$D C 1 U_{e}=220 \mathrm{~V}$:	0.6 A	0.6 A

The max. number of switching for max. load:	600 switch/hr.	600 switch/hr.
Electrical life in 230 / 400 V		
AC-1- resistive load :	0.2×10^{6}	0.2×10^{6}
AC-3-power load:	0.3×10^{6}	0.5×10^{6}
AC-5a - high-intensity discharge lamp:	0.1×10^{6} by $30 \mu \mathrm{~F}$	0.1×10^{6} by $36 \mu \mathrm{~F}$
AC-5b-incandescent lamps :	0.110^{6} by 1.5 kW	0.1×10^{6} by 1.5 kW
AC-7a - resistive household devices:	0.2×10^{6}	0.2×10^{6}
AC-7b - inductive household devices:	0.3×10^{6}	0.5×10^{6}
Minimal load:	$\geq 17 \mathrm{~V}, \geq 50 \mathrm{~mA}$	$\geq 17 \mathrm{~V}, \geq 50 \mathrm{~mA}$
Short circuit protection with the fuse char. aM :	20 A	25 A
Coordination Type according EN 60 947-4-1:	2	2
Electrical strenght:	4 kV	4 kV
Contacts - max. cable size		
Solid conductor:	AWG $7\left(10 \mathrm{~mm}^{2}\right)$	AWG 7 ($10 \mathrm{~mm}^{2}$)
Stranded conductor:	$6 \mathrm{~mm}^{2}$	$6 \mathrm{~mm}^{2}$
Maximal torque:	1.2 Nm	1.2 Nm
Coil - max. cable size:		
Solid conductor:	AWG $10\left(2.5 \mathrm{~mm}^{2}\right)$	AWG 10 ($2.5 \mathrm{~mm}^{2}$)
Stranded conductor:	$2.5 \mathrm{~mm}^{2}$	$2.5 \mathrm{~mm}^{2}$
Max. torque:	0.6 Nm	0.6 Nm
Operating		
Coil control voltage:	AC $12 \mathrm{~V}, 24 \mathrm{~V}, 110 \mathrm{~V}$	AC $12 \mathrm{~V}, 24 \mathrm{~V}, 42 \mathrm{~V}$
Coil permanent supply +/-10\%:	2.8VA/1.2 W	$5.5 \mathrm{VA} / 1.6 \mathrm{~W}$
Coil gear supply $+/-10 \%$:	$12 \mathrm{VA} / 10 \mathrm{~W}$	$33 \mathrm{VA} / 25 \mathrm{~W}$

Mounting side-by-side:	max. 2 contactors*	max. 2 contactors*
Operational temperature:	23.. $131{ }^{\circ} \mathrm{F}\left(-5 . .55^{\circ} \mathrm{C}\right)$	
Storing temperature:	-22..176 ${ }^{\circ} \mathrm{F}\left(-30 . .80^{\circ} \mathrm{C}\right)$	
Weight:	$4.9 \mathrm{oz} .(140 \mathrm{~g})$	$260 \mathrm{~g}(9.17 \mathrm{oz}$.
Dimensions:	$0.7^{\prime \prime} \times 3.35{ }^{\prime \prime} \times 2.4$ " (17.5 $\times 85 \times 60 \mathrm{~mm}$)	$1.4{ }^{\prime \prime} \times 3.35$ " 2.4 " $(35 \times 85 \times 60 \mathrm{~mm})$
Standards:	IEC 60947-4-1, IEC 60947-5-1, IEC6	EN 60947-4-1, EN 61095,VDE0660

VS120
VS120-01 24V AC/DC: 8595188129848
VS120-10 24V AC/DC: 8595188129367

VS425

VS425-04 24V AC/DC: 8595188129527
VS425-04 48V AC/DC: 8595188129558
VS425-04 110V AC/DC: 8595188160032

VS425-22 24V AC/DC: 8595188129541

VS425-31 24V AC/DC: 8595188129497
VS425-31 48V AC/DC: 8595188137898
VS425-31 110V AC/DC: 8595188129534

VS425-40 24V AC/DC: 8595188129480
VS425-40 48V AC/DC: 8595188136174

VS220
VS220-02 24V AC/DC: 8595188129381 VS220-02 110V AC/DC: 8595188138628

VS220-11 24V AC/DC: 8595188129374
VS220-11 48V AC/DC: 8595188129398
VS220-11110V AC/DC: 8595188130790

VS220-20 24V AC/DC: 8595188125253
VS220-20 48V AC/DC: 8595188129411
VS220-20 110V AC/DC: 8595188129428

VS440
VS440-04 24V AC/DC: 8595188129299 VS440-04 110V AC/DC: 8595188129305

VS440-22 24V AC/DC: 8595188129787

VS440-31 24V AC/DC: 8595188129572
VS440-40 24V AC/DC: 8595188129565 VS440-40 110V AC/DC: 8595188138567

VS420

VS420-31 24V AC:	8595188129442
VS420-31 110V AC:	8595188129466
VS420-40 12V AC:	8595188129459
VS420-40 24V AC:	8595188129435
VS420-40 48V AC.	8595188138581

VS463

VS463-22 24V AC/DC: 8595188129794

VS463-31 24V AC/DC: 8595188129596 VS463-31 110V AC/DC: 8595188137904

VS463-40 24V AC/DC: $\quad 8595188129589$ VS463-40 48V AC/DC: 8595188160612 VS463-40 110V AC/DC: 8595188140652

EAN codes for VSM

VSM220

VSM220-02 24V AC: 8595188129817

VSM220-11 24V AC: 8595188129800

VSM220-20 12V AC: 8595188138369
VSM220-20 24V AC: 8595188128117
VSM220-20 110V AC: 8595188160223

VSM425
VSM425-04 24V AC: 8595188129831

VSM425-22 24V AC: 8595188129336

VSM425-31 24V AC: 8595188129824

VSM425-40 12V AC: $\quad 8595188160049$
VSM425-40 24V AC: 8595188128162

EAN codes for VSK

VSK-11:	8595188121613
VSK-20:	8595188121606

TECHNICAL INFORMATION

Main regulations for correct use of products
Product loadability
Electro-magnectic compatibility of products
EMC chart
Overview of tested types of light sources and the loads
Products packing
Dimensions
Examples of usage
Support of project designing
Production technology

Main instructions for correct use of ELKO EP products

To ensure correct and perfect function of a device and its safe operation, it is necessary to ensure and observe several main regulations:

Abstract

1.) Device supply - it is necessary to ensure continuous supply of the device without drops and voltage peaks. It is mainly important for device (e.g. dimmers) where there is synchronization managed by sine wave of the main and fault in the main ca cause unreliable function of the device - it is necessary to observe correct connection of terminals, and in case of DC supply voltage also polarity - it is necessary to observe allowed tolerance of the size of supply voltage which is given by technical parameters of individual devices

2.) Protection of the device

- it is necessary to ensure protection of the device by adequate elements of overvoltage protection - by fuses, by surge arrestors

3.) Elimination of disturbances on input circuits

- it is recommended to eliminate disturbances on control inputs of devices by suitable elements (R-C elements) and thus minimize creation of inductive voltage on incoming wires - pay attention when connecting control inputs and keep in mind max. current and min. voltage at rest, which can cause spontaneous switching of device

4.) Opereting conditions

- to assure the granted life and correct functions of device, there is not recommended to leave the device in extreme conditions that could negative way influence the correct device functions - permanent temperature influence over $70^{\circ} \mathrm{C}$, aggressive exhalations, chemicals, high relative humadity over 95%, high electromagnetic field or microwave radiation
- for error-free function it is necessary to avoid device placement close to electromagnetic interference source
- all mentioned products fulfill the EMC requirements in accordance with EU Directive 89/336/EEC. Notwithstanding it is necessary to pay attention when devices are connected to circuit with electrical appliances that produce electromagnetic interference (contactors, motors), and pay attention to close power cables. It is recommended that device connecting cables (supply and control inputs) are possibly short and go separately from power cables. In case the device is connected to circuit with contactors or motors, it is necessary to protect the device with appropriate extern protection components - RC members, varistors or surge voltage protector.
- when you use AL wires, it is necessary to follow requirements of ČSN standard 370606: 1959 and ČSN 370606 amendment 2: 1992

5.) Device handling and using

- input terminals do not fill-in with high power (for serial terminals max $0.5 \mathrm{~N} / \mathrm{m}$), do not give excessive pressure to carrier terminal parts to avoid demage of inner device construction - protect the device before falls and excessive vibrations that could demage relays contacts
- do not overload input relay's contacts, especially when using loads with other category then AC1
- when at switching of big loads the relay contacts get sealed it is necessary to use inserted contactor or power relay tuned to required load for given application

Description of used protection elements in device

All time and monitoring relays from our assortment are equipped with protective elements (varistors) against possible overvoltage in supply main. Limit voltage of used varistors is 275 V . At short-time overvoltage in supply main varistor decrease its leak resistor and accumulate arosen overvoltage. When this overvoltage behave as short-time peak, varistor is able to react and protect the device against negative influences. As other protection elements there are used transils and zener diodes that eliminate overvoltage impulses in supply and input circuits of device (e.g. when switching inductive loads). In case of switching inductive loads it is recommended to separate a supply of power element (motors, contactors etc.) from supply of measuring and control device inputs.

On the charts bellow you can see oscilographic running of disconnecting of loads (contactors) and reaction of protective elements to arosen voltage pikes.

Process of disconnection of contactor with coil on 230V/AC without R-C member

Process of disconnection of contactor with coil on 230V/AC and R-C member 390 0hm-330 nF

Process of disconnection of contactor with coil and limited varistor on 230V/AC

Electromagnetic compatibility of ELKO EP, s.r.o. products

Electromagnetic compatability (EMC) is a new scientific field which was founded in the 60 s last century. It had been known only to a small number of specialists working in a military and cosmic research.

Electromagnetic compatability EMC is defined as an ability of a device, system or a machine to show the correct operation even in an environment in which there are other sources of electromagnetic signals (natural or artificial), and also an ability not to influence negatively the environment by its own "electromagnetic action" and not to radiate signals that would disturb other devices. It is an indicator of good quality and reliability. Breach of such EMC requirements may cause several damages with catastrophical consequences.

When testing EMC of a device or system (technical and biological), it is based on so called " fundamental chain of EMC" shown in the picture This chain shows a system problematic of EMC and we inspect all three components.

SOURCE OF ELECTROMAGNETIC DISTURBANCES	ENVIRONMENT OF DISTRIBUTION, ELECTROMAGNETIC STRUCTURE	DISTURBED OBJECT, DISTURBING RECEIVER
motors, switches, relays, power distributions, semi-conducting alternators, fluorescent tubes, arc furnances, welding machines, oscillators, PC, digital systems, electrostatic discharge...	air space, energy cables, supply convection, convection, grounding, screening, signaling conductors, data condutors...	digital devices, PC , measuring devices, automatization device, telecommunication system, data transmission system, wireless set, television receivers...

Test SURGE

For guarantee the immunity of our devices against to electromagnetic disturbance we are doing EMC tests and according results we are still innovating our product to be accoding the EMC norms with reserve. The most important test is immunity against gust of high-energy voltage and current impulse (SURGE), what is made according the norm IEC 61000-4-5.
By this our products are controlled in case of short time pulse, what is apllicated as to input as to output circuits of divices, to switching inputs, sensing inputs, etc. Our produts pass all criterias and are fully competitive to foreign products. Test SURGE is used in practice mainly for 1 -phase devices with take-off current to 16 A . It makes use of voltage impulse $1,2 / 50 \mathrm{~ms}$ no load and current impulse $8 / 20 \mathrm{~ms}$ for short time. Size of used voltage impulse is $0.5 \mathrm{kV}, 1 \mathrm{kV}, 2 \mathrm{kV}$ and 4 kV , size of used current impulse is 2 kA on 4 kV with choise of changing polarity. For testing by impulses is as coup mode specify capacitive coupling.

Test BURST

Other very important test is test immunity against quick short-lived effect (couple of impulses- BURST), which dissimulated influence if industry disturbance. Test is made according to the norm IEC 61000-4-4.
Disturbance signal is injected to supply circuits and communication cabling. Coupling is made by 1-phase capacitive circuit or coupling capacitive ribband to supply, signalling or data convection of tested device. Size of testing impulses is $0.5 \mathrm{kV}, 1 \mathrm{kV}, 2 \mathrm{kV}$ and 4 kV in possitive and negative polarity. Repeat frequence is 2.5 kHz , or 5 kHz . Period of testing $0-6$ minut by steps for 0.1 s .

Test POWERFAIL

For right function of products in industry is important POWERFAIL test - simulation of decreasing and failure of supply voltage. It is made according to the IEC 61000-4-11.
Short-time supply decreasing are random decreasing of supply voltage, which are more than $10-15 \%$ of its nominal size and have short time existing $0.5-50$ periodes of basic frequency 50 Hz .
Short breaks of voltage are short time decreasing over 100%. Mentioned changes of supply circuit voltage are made in practise by disturbance in mains (high voltage, low voltage) and breaks on load of the main

Test of EMC emissions

Electronic devices must be designed not to be a source of oversize electric or electromagnetic disturbances in its surroundings. Test is executed according to standard EN 55022 .
Emissions are measured by wires or by air.

Test of electromagnetic high-frequency field and HF signal coming from the main

The purpose of this test is to verify immunity of the device against electromagnetic fields that are created by radio transmitters or by any other device which transmits electromagnetic energy by uninterrupted waves (walkie-talkies, radio and TV transmitters.)
Test is carried out against disturbances in the main and emissions. We apply testing level 3 which for HF field means intensity of field $10 \mathrm{~V} / \mathrm{m}$ and for HF signal it is voltage level 10 V .

Test of electrostatic discharge

It is a test of resistance against discharges of electrostatic energy caused by servicing or by surrounding objects. Such discharge can damage a device or its components.
Test is carried out by direct or indirect application of discharges to a tested device. Test is carried out according to a standard EN 61000-4-2. Direct influence of discharges is targeted into such places and surfaces that are accessible to servicing during common use. Indirect influence of discharge is done by horizontal and vertical coupling board.
The device is treated by at least ten individual discharges for positive and negative polarity. Testing levels are $2 \mathrm{kV}, 4 \mathrm{kV}, 6 \mathrm{kV}, 8 \mathrm{kV}, 15 \mathrm{kV}$.

Company ELKO EP has its own test laboratory in which it carries out pre-certification for conditions that must be met by each of our products. Thus customers gets not only a product of a high quality, which is ensured by many years of experience in the field of switching relays, but also a product which can operate in demanding conditions of industrial environment. Product, tested this way, guarantees reliability and functionality to customer's full satisfaction.

Products packing

Products	Packing	Design
COS-1, HRH-1, HRN-41, HRN-42, HRN-43, PDR-2, PRI-41, PRI-42, PS-30-12, PS-30-24, PS-30-R	Packing of 3-MODULE relay - 1 pc	
$\begin{aligned} & \text { SHT-1, SHT-3, } \\ & \text { SHT-1/2, SHT-3/2 } \end{aligned}$	Packing of 2-MODULE relay - 1 pc	
PRM-91H, PRM-92H, PRM-2H	Packing of plug - in relay - 2 pc	
SOU-1, LIC-2, CRM-91HE, CRM-2HE	Packing of 1-MODULE relay with accessories	
CRM-81J, CRM-83J, CRM-82TO, CRM-61, CRM-9S, CRM-2H, CRM-2T, CRM-4, SOU-1, HRH-5, HRN-33, HRN-34, HRN-35, HRN-55, HRN-55N, HRN-54, MR-41, MR-42, HRN-56, HRN-63, HRN-64, HRN-67, PRI-51, SJR-2, TER-3, TER-7, VS116U, VS316/24	Packing of 1-MODULE relay - 10 pcs	

Dimensions

1-MODULE DESIGN

front panels 1-MODULE, examples of use:

CRM-81J	CRM-82T0	SJR-2	CRM-2HE	CRM-91H	HRN-56	CRM-4	MR-42	PRI-51	SOU-1	HRH-5	TER-7
$\bigcirc 0$	$\bigcirc \bigcirc$	$\bigcirc 0$	$\bigcirc \bigcirc$	$\bigcirc \bigcirc$	$\bigcirc \bigcirc$	$\bigcirc 0$	$\bigcirc 0$	$\bigcirc \bigcirc$	$\bigcirc 0$	$\bigcirc \bigcirc$	$\bigcirc 0$
	\bigcirc	\bigcirc	\bigcirc	\bigcirc				\bigcirc	圆	\bigcirc	圆
		\bigcirc	\bigcirc	\bigcirc	\bigcirc	\square			\bigcirc	\bigcirc	
\bigcirc	\bigcirc	\bigcirc				\bigcirc			\bigcirc	\bigcirc	\bigcirc

2-MODULE DESIGN

Temperature sensor
TC

TZ

PT100

SMR-T

SMR-B

Dimensions

Dimensions

HRH-7

Level sensor

PRM-91H/11, PRM-91H/8, PRM-92H, PRM-2H

Socket for PRM-91H/11, PRM-92H, PRM-2H
ES-11

Socket for PRM-91/8

ELEO

Dimensions

Our aim is to give a complete care to all electro project designers.

Our activities:
Our products are a part of the following programs:

TRAINING
In case our products attracted your interest, do not hesitate to contact us at elko@elkoep.com or see our websites www.elkoep.com for more information.
TECHNICAL SUPPORT
In case of any questions regarding use of our products for a particular project, contact us at support@elkoep.com.
Note.: logos, names, software, hardware are protected by owner's rights.

Examples of usage

Multifunction time relay CRM-91H,CRM-93H

- for electric appliances, where is necessary to change the exact timing - controlling of the illumination, heating, motors, machines, ventilators, contactors...

Multifunction time relay with contactless output CRM-9S

- using for warning illuminatin on the road, flashers, cyclers, often switched systems ...

Multifunction time relay with external potentiometer CRM-91HE

- time adjusting via external operating unit, operating on panel, switchboard doors

Time relay plug-in type PRM-91H, PRM-92H

- serves to control light signallization, heating, motor and fan control etc.

Delay OFF without supply voltage CRM-82T0

- delayed back-up switch off at current failure (emergency illumination, emergency respirator)

Examples of usage

Digital time switch SHT-1/2

- for controlling of all appliances that depend on real time, appliances could be controlled in regular cycles, or according to adjusted program (blocking of main door out of working hours or night)
- in combination with other devices, controlling could be combinated (rooms ventilation, irrigation controlling, bell at school or in church...)

Doublestage delay unit SJR-2

- for sequential load switching, electric furnaces, heaters....

Staircase switch CRM-4

- staircase automatic systems, ventilators switching, for multiplace operating illumination on the staircases and halls...

Asymmetric cycler CRM-2H

- regular rooms ventilation, cyclic humidity exhaustion, illumination controlling, circulation pump, flash, warning appliances, regular pump down, regular irrigation via electromagnetic valve

Singlefunction time relay CRM-81J

- time switch, using for run down the pump after switch off the heating, switching of ventilators ..

Examples of usage

Digital time switch SHT-1, SHT-1/2

- for controlling of all appliances that depend on real time, in daily or weekly mode

Monitoring current relay PRI-41 (PRI-42)

- monitoring over-/-underload (machine, motor ...)
- monitoring consumption, diagnostics of distant appliance (short circuit, increased consump. ...)

Programmable digital relay PDR-2

- illumination, ventilators, contactors controlling, controlling of interlocking plans, system of time abate and blocking (billiards, pin-balls....), away control via external buttons

Twilight switch SOU-1

- outdoor illumination switching (garden illumination), flash, shop-window, hall and office illumination (switch off in desired light level, controlling of intensity)

Examples of usage

Memory relay MR-41, MR-42

- because of 2-wire parallel buttons connection save money, place and time during the installation - light switching, hall, staircase, big rooms, controlling systems, automation

Switching power supply PS-30-R

- power supply of any devices and appliances via safe voltage with full galvanically separated from mains
- power supply of driving systems, interlocking plants and use in measurement and control

Thermostat for thermal protection of motors TER-7

- protection of motors against thermal overload

Multifunction digital thermostat TER-9

- complex control of heating and water heating in a house

Examples of usage

Monitoring voltage relay HRN-33 (35)

- monitoring of mains voltage for appliances inclinable to supply tolerance

Monitoring voltage relay HRN-33 (35)

- protection of appliances against under-/overvoltage

Monitoring voltage relay HRN-35

- start of back-up supply in case of failure

Monitoring voltage relay HRN-34

- load disconnected when voltage declines or battery is discharged

Monitoring current relay PRI-51, PRI-32

- current-limiting relay (on one branch two appliances, which never work together), controlling systems, motors, heating, current indication, controlling of 1-phase motor run down, during the installation of main housing switchboard could be controlled via eye, if the cooker is not switched
- in connection with current transformers, it is possible to extend current ranges up to 600 A , which makes more things possible

Examples of usage

Level switch HRH-1

- monitoring level in wells, tanks, pools, etc.

Level switch HRH-5

Thermostat TER-3 with external sensor

- control of temperature of floor heating

Modular contactor VS120, VS220, VS420, VS425

- to switch circuits for supply and control of heating, lights, air-conditioning and other el. devices.

Switches loads AC-1, AC-3, AC-7a, AC-7b, AC-15.

- monitoring level in well, sump, tanks, pool, silo...

N

2 stage thermostat TER-4 with 2 external sensors - control of temperature of e.g. gas/electric boiler

Modular contactors VS440, VS463

- to switch supply and control circuits for heating, air-conditioning and other el. devices, switching 3-phase motors
Switches loads A-1, AC-3, AC-7a, AC-7b, and AC-15

ENJOY THE COMPLETE HOUSEHOLD EQUIPMENT BY ELKO EP

INDUSTRIAL USE OF ELKO EP PRODUCTS

Other just resell

HOWEVER WE DEVELOP AND MANUFACTURE PRODUCTS OURSELVES!

R\&D overall view

SMD production line

Production hall

Internal lab

Chip placing

Testing

ELIS
iNEl.S SmartHome LLC a company of ELKO EP Holding
837 Peace Ln | Oregon, WI 53575 | USA
phone: 608-886-1744 | info@inelssmarthome.com | www.elkoepusa.com

